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Summary: A Markov modulated Poisson process (MMPP) is a Poisson process
whose intensity varies according to a Markov process. We present a novel tech-
nique for simulating from the exact distribution of a continuous time Markov
chain over an interval given the start and end states and the infinitesimal gener-
ator, and use this to create a Gibbs sampler which samples from the exact dis-
tribution of the hidden Markov chain in an MMPP. We apply the Gibbs sampler
to modelling the occurrence of a rare DNA motif (the Chi site) and to inferring
regions of the genome with evidence of high or low intensities for occurrences of
this site.
Keywords: Forward-Backward Algorithm, Genome Segmentation, Gibbs Sam-

pler



1 Introduction

A Markov Modulated Poisson Process (MMPP) is a Poisson process whose in-
tensity depends on the current state of an independently evolving continuous
time Markov chain. Points from the MMPP are often referred to as the observed
data and the underlying Markov chain as the hidden data.

MMPP’s are used in modelling a variety of phenomena. For example, the
arrivals of photons from single molecule fluorescence experiments (Burzykowski
et al., 2003; Kou et al., 2005), where the arrival rate of photons at a receptor
is modulated by the state of a molecule which (in the simplest model formula-
tion) alternates between its ground state and an excited state. Other examples
include, wet deposition of a radionuclide emitted from a point source (Davison
and Ramesh, 1996); frequency of bank transactions (Scott, 1999); requests for
web pages from users of the World Wide Web (Scott and Smyth, 2003); mod-
elling overflow in telecommunications networks; and modelling packetised voice
and data streams (Fischer and Meier-Hellstern, 1992). Later in this paper we
use MMPPs to model the occurence of a rare DNA motif in bacterial genomes.

We focus on inference of both the parameters and hidden state of MMPPs.
The type of data available varies from application to application. In some appli-
cations the exact timings of all observed events are known and in others data are
accumulated over fixed intervals. In the latter situation the observed data often
appear as either a count of the number of events in each interval or a binary
indication for each interval as to whether there were no events or at least one
event.

MMPP parameters can be fitted to data by matching certain theoretical mo-
ments to those observed (see Fischer and Meier-Hellstern (1992) and references
therein). However, it is possible to calculate the likelihood of arrival data for

an MMPP (for example Asmussen (2000); see also Section 4). Ryden (1996)



summarises several likelihood approaches.

Here we consider Bayesian analysis and focus on exploring the posterior dis-
tribution via Markov chain Monte Carlo. Metropolis-Hastings algorithms (e.g.
Gilks et al., 1996) provide a standard mechanism for Bayesian inference about
parameters when the likelihood is computable. This approach is employed for
example by Kou et al. (2005). Alternatively an approximate Gibbs sampler has
been developed in Scott (1999) and Scott and Smyth (2003). This Gibbs sam-
pler is only applicable to event-time data, and restricts the possible transitions
of the underlying Markov chain. The approximation is based on requiring that
certain transitions of the underlying chain can only occur at event-times. How-
ever for the examples considered in Scott (1999) and Scott and Smyth (2003)
this approximate Gibbs sampler is very efficient.

Here we present an exact Gibbs sampler which, conditional on the data,
samples alternately from the true conditional distribution of the hidden chain
given the parameters and then the conditional distribution of the parameters
given the hidden chain. This Gibbs sampler can analyse data in any of the
three forms (exact timings, and interval counts or binary indicators) outlined
earlier in this section, and can allow for a general transition matrix for the state
of the hidden the Markov chain. It also avoids the simplifying approximation
used by Scott (1999). An advantage of the Gibbs sampler over a Metropolis-
Hastings scheme is that the Gibbs sampler does not need to be tuned. The
Gibbs sampler also allows directly for inference about the hidden states through
approximate samples from their posterior distribution. This feature is important
for the application in genomics that we consider.

The main novelty in the Gibbs sampler is a direct simulation algorithm for the
conditional distribution of the complete continuous time path of the hidden state.

This is an extension of the forward-backward algorithm of Baum et al. (1970) to



continuous time, and an extension of the ideas of Fearnhead and Meligkotsidou
(2004). Tt can be applied to general continuous time Markov processes and
provides an alternative to the rejection sampling algorithms of Blackwell (2003)
and Bladt and Sorensen (2005). We describe the forward-backward algorithm
in Section 2 and present its extension to continuous time Markov process in
Section 3. We then focus on MMPPs, reviewing the derivation of the likelihood
in Section 4, and present the Gibbs sampler in 5. We then the Gibbs sampler to
analyse data of the occurence of a DNA motif, known as the Chi sites, in E. coli

in Section 6 and the paper concludes with a discussion.

2 The forward-backward algorithm

The forward-backward algorithm (Baum et al., 1970) applies to any discretely
observed Hidden Markov Model (HMM) and allows sampling of the state of the
hidden chain at the observation times given the states at the start and end of the
observation window. The algorithm is easily extended to the case where there is
a prior distribution on the initial state and no knowledge of the end state of the
chain.

We first describe a general HMM. Let an unobserved (discrete or continuous

time) Markov chain evolve over a state space of cardinality d. We observe a

second process over a window [0, .| at specific times ¢}, ..., ¢, . Suppose that
the value of the observed process at time ¢t} is dy, and define d := (dy,...,d,)".
For notational convenience define tj = 0, #,; = tos and t' = (5, ..., 1,,1).

Also write sj for the state of the unobserved Markov chain at time ¢;. The
likelihood of the observed process depends on the state of the hidden process via
a likelihood vector 1¥) with k = 1,...,n where I{¥) := P (di|S; = i). From this
define a likelihood matrix L*) = diag(1*)).



Let T®) be the k™ transition matrix of the Markov chain (i.e. Ti(jk) is the
probability that the unobserved process is in state j just before ¢} given that it
is in state 7 at t}_,.)

We define probability matrices

gtlsti)l = p(5n+1‘5n = 5)
Aglfsm—l = P(dka ) dn; Sn+1|5k71 = S) (0 <k < n)

And note that

d
P(dk, ..., dp, Sni1]sk-1) = Z P(sk|sk-1)P(dk|sk) P(dks1s - dn, Snyr|sk)

Sk:1

Therefore the matrices may be calculated via a backwards recursion

A(n+1) T(n+1)

A® = TWL®AED (0 < | < p)

These matrices accumulate information about the chain through the data. The

final accumulation step creates A, where Ag?ﬂswl = P(d, sp41/S0) is propor-

tional to the likelihood of the observed data given the start and end states.
Using the Markov property we therefore have

P(Sk = S‘ da Sk—1, Sn-l—l) - P(Sk - S‘ dka ey dna Sk—1, sn—l—l)
Ts(lle,S lgk)Aglf;;i)1

= (1)

(k)
ASk—195n+1

Using (1) we may proceed forwards through the observation times ¢,...%,,
simulating the state at each observation point in turn. This algorithm is often
presented in the equivalent formulation of a forwards accumulation of information
and a backwards simulation step through the observation times.

If the start and end states of the chain are unknown, but a prior distribution

p on the state of the hidden process is provided, then with a slight adjustment



to the algorithm we may simulate the states at the start and end times of the
chain as well as at the observation times.

The start state is simulated from

s [AW1]

where 1 is the d-dimensional vector of ones.

P(Sy = s|d) =

The state s (k > 0) is then simulated from

T 1 [AFY 3

The observation times in a Markov Modulated Poisson Process correspond

P(Sk = S|d, Skfl) =

Sk—1

to actual events from the observed Poisson process. Therefore not only do the
observations contain information about the state of the hidden chain, but so do
the intervals between observations, since these contain no events. In Section 4 we
derive likelihoods through accumulation steps modified to take this into account.
In a similar way we can use the forward-backward algorithm to simulate the state
of the hidden chain at observation times for the first stage of our Gibbs sampler.
The second stage of the Gibbs sampler simulates a realisation from the exact
distribution of the full underlying Markov chain conditional on the data. This
is more challenging and relies on a technique for simulating a realisation from a

continuous time Markov chain over an interval given the start and end states.

3 Simulating a continuous time Markov chain
over an interval given the start and end states

Let continuous time Markov chain W, have generator matrix G, and let it start
the interval [0,¢] in state sy and finish in state s;. We describe a method for
simulating from the exact conditional distribution of the chain given the start

and end states.



The behaviour of W; on entering state ¢ until leaving that state can be thought
of in terms of a Poisson process of rate p; := —g;; and a set of transition proba-
bilities

pij = gij/pi (i #])
=0 (i =)
The Poisson process is started as soon as the chain enters state ¢; at the first
event from the process the chain changes to a state j determined at random using
the transition probabilities for state i. A new Poisson process is then initiated
with intensity corresponding to the new state.

An alternative formulation is based on the idea of uniformisation (e.g. Ross,
1996). We apply a single dominating Poisson process U, to determine when tran-
sitions may occur; crucially the intensity p of the Poisson process is independent
of the chain state. We call the events in this dominating Poisson process “U-
events”. Probabilities for the state transitions at these U-events are defined in
terms of a transition matrix M.

The intensity of the dominating process must necessarily be at least as large as
the largest (in modulus) diagonal element of G. With p = max p; the transition

matrix for the discrete time sequence of states at U-events is

1
M = -
p

For any state 7 with p; < p, M specifies a non-zero probability of no change

G+ L

in the state, so that the rate of events that change state is p;. Considering an
interval of length ¢ straightforward expansion of the transition matrix for the

interval gives
oo

Gt _ —plt ,pMi _ —pt (pt)er 4
e e e ;6 e (4)

The (i, 7)™ element of the left hand side is P(W; = j|W, = i). If we define
Ny (t) as the number of U-events over the interval of length ¢ then the (i, 7)™
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element on right hand side can be interpreted as
> P(Ny(t) =r) P(W, = j|[Wy =i, Ny(t) = 1)
r=0

Thus conditional on start and end states sy and s;, the distribution of the

number of dominating U-events is given by

e Pt (o) .
PNy (t) = 1) = M ko (5)

[ 50,50

We have used a single dominating Poisson process with fixed intensity inde-

pendent of the chain state. Therefore conditional on the number of dominating
events, the positions of these events and the state changes that occur at the
events are independent of each other and may be simulated separately. Further-
more, since U, is a simple Poisson process the U events are distributed uniformly
over the interval [0, ¢].

Suppose that r dominating U events are simulated at times ¢7, ..., ¢, and let

*
e

these correspond to (possible) changes of state of W; to si,...,sk. For conve-
nience we define 7; := 0 and sj := 5.
Now
P(W, = s;|Wy = s0) = [M"]

50,5t

The start and end state for each interval are assumed known, and so we
employ the forward-backward algorithm of Section 2 with L*) =T and T®) = M
to simulate the state change at each U event

X [M]S},I,S[Mrij]s,m .
P(Wt = S|Wt;_1 = sj—l’ Wt = St) = [Mr7j+1] . (] = ]'7 v ,T) (6)

« =
J
j—1s5t

Our algorithm then becomes

(i) Simulate the number of dominating events using (5).

(ii) Simulate the position of each dominating event from a uniform distribution

over the interval [0,t].



(iii) Simulate the state changes at the dominating events using (6).

4 Likelihood for MMPP’s

We now focus exclusively on MMPP’s. Let a (hidden) continuous-time Markov
chain X; on state space {1,...,d} have generator matrix Q and stationary dis-
tribution v.

An MMPP is a Poisson process Y; whose intensity is A\; when X; = 4, but in
all other ways is evolving independently of X;. We write X := (\y,..., \y)" and
A = diag().

We are interested in Bayesian inference about A, Q, and X;. Here we re-
view derivations of likelihood for the three different data types mentioned in
the introduction. Likelihoods are required for inference about A and Q using
Metropolis-Hastings schemes (see Section 5). The accumulation steps and ex-
tended state spaces used here are essential also for our Gibbs sampler which
allows inference for A, Q, and X; and is detailed in section 5.2.

The Y process is (fully or partially) observed over an interval [0, .| with
tops known and fixed in advance. We employ the symbol 1 for the matrix or
(horizontal or vertical) vector all of whose elements are one, and similarly 0 is a

matrix or vector all of whose elements are zero.

4.1 Derivation of the likelihood function

We are interested in inference for three commonly encountered data formats

D1 Exact times are recorded for each of the n observed events (see Kou et al.

(2005), and Scott and Smyth (2003) for example uses of this data format).

D2 A fixed series of n+1 contiguous accumulation intervals of length ¢; is used,



and associated with the i interval is a binary indicator b; which is zero if
there are no Y-events over the interval and one otherwise (see for example

Davison and Ramesh, 1996).

D3 A fixed series of n+1 contiguous accumulation intervals of length ¢; is used,
and associated with the i** interval is a count ¢; of the number of Y-events

over the interval (see for example Burzykowski et al., 2003).

In each case it is possible to derive the likelihood function. We summarise the
three derivations; for more details see Asmussen (2000), Davison and Ramesh

(1996), and Burzykowski et al. (2003) respectively.

4.1.1 Likelihood for event-time data

We first consider the data format D1. We write Ny (¢) for the number of Y-events
in the interval [0,¢], so that Ny (0) = 0 and Ny (t,s) = n, the total number of
events. For notational convenience we set t; = 0, ¢/, .| =t and let ,..., ¢, be
the event times for the n events. Define t, = ¢, —#, .,k = 1,...,n + 1; these
are respectively the time from the start of the observation period to the first
event, the inter-event times, and the time from the last event until the end of
the observation period. We define t := (t1,...,t,41)"

We first derive a form for

PY(t) := P(there are no Y events in (0,¢) and X, = j | Xy = 9)

ij
We define a meta-Markov process W; on an extended state space {1,...,d, 1%},
and let W, combine X; and Y; as follows: W; matches X; exactly up until just
before the first Y event. At the first such event W moves to the absorbing state
1*. So if the first Y-event occurs at time ¢’
fort<t, W, = X,

fort>t', W, = 1

10



The generator matrix for W; is

Gy-| &M (1)
0 0

So the transition matrix at time ¢ is

e@Q-Mt(Q — A)1 (@M1 _T)A
0 1

From the definition of W we see that

PO (#) = [e(@A),. 9)

] v

So the likelihood of the observed data, and that the chain ends in state j given

that it starts in state i is the (i,5)" element of
Q=M p Q-Mya g A L(Q-A)tni
This is the A(®) matrix of the forward-backward algorithm as described in Section

2. Assuming that the chain starts in its stationary distribution, the likelihood of

the observed data is therefore

L(Q, A, t) = vle@ Mg | @Dt po(@-D)tniry (10)

4.1.2 Likelihood for accumulation interval formats

We now consider data formats D2 and D3 and for simplicity assume all the
interval lengths to be equal (t; = t* ,i = 1,...,n + 1). Extension to the more
general case is straightforward.

Define

Pi(js) = P(there are s Y-events over (0,¢*) and Xy = j| X, = i)]

11



and
P;; = P(there is at least one Y-event over (0,#*) and X, = j| X = i)]

With b; as the binary indicator for at least one event in the 7** interval, the

likelihood for D2 is therefore
n+1
(T e
i=1
and with count ¢; of the number of events for each interval the likelihood for D3

n+1
V! (H P(Ci)) 1
i=1

PO is given by (9) and so it remains to calculate the matrices P(¢) (¢ > 0), and

P.

1s

Since the probability of finishing interval (0,¢*) in state j given starting state

i is the (i,7)"" element of eQ"", we see that

P - _ QA

For format D3 define ¢,,,, = max ¢; and create a new meta-process V; on state
space S = (1O ... d© 10 d® 1leme) - glemaz) 1) If the number of
Y-events observed up until time ¢ in the accumulation interval containing ¢ is
Ny (t), then for Ny (t) < ¢ae Vi = Xt(N‘*’(t)) and otherwise V; = 1*. For example
if at time ¢, the hidden process is in state 3 and there have been 7 events so far
in the accumulation interval containing ¢, then the meta-process V; is in state
3(7)

The generator matrix for V; is

12



(Q-A A 0 0o 0|
0 Q-A A 0 o
0 0 _A 0 0
G, @ (11)
0 0 0 Q-A A
0 0 0 0 0

t*

and the block of square matrices comprising of the top d rows of eS**" give the

(d x d) conditional transition matrices P(").

5 Bayesian approach

We are interested in Bayesian analysis of MMPP’s. We first briefly discuss
the choice of priors, before describing our new Gibbs sampling algorithm. For
background on existing MCMC schemes for MMPPs see the introduction and

references therein.

5.1 Choice of prior

For computational simplicity we use conjugate priors for the parameters. If we
let p = —¢;;, be the rate that the hidden Markov chain leaves state i, and
pij = @;/p; be the probability of a transition to state j(# i) when we leave
state ¢, then we assume independent gamma priors for the \;s and the p;s and
Dirichlet priors for each vector of probabilities (p; 1, ..., Dii—1: Dijit1,-- s Pid)-
Care must be taken with the parameters of these prior distributions. In
particular, improper priors for the parameters can lead to improper posteriors
(e.g. Sherlock, 2005). Also we would hope that each ¢;; < A; so that most visits

to a given state will contain observed events, making it easier to identify the

13



separate states, as well as to infer A,

5.2 Gibbs sampler

We first introduce some notation. We write the state of the chain at event-times
(or for D2 and D3 the end of each time-interval) and at the start and end of the
observation period as S; = Xy. The distribution of the new parameter vector
depends on the underlying chain through the starting state (via vy,) and three
further sufficient statistics, which we now define.

We write ¢; for the total time spent in state ¢ by the hidden chain, ri; for
the number of times the chain transitions from state i to state j (r; = 0 Vi),
and n; for the number of Y-events that occur while the chain is in state i. We
correspondingly define t = (f1,...,%3)", n = (n4,...,nq)", and R as the matrix
with elements r;; . Our Gibbs sampler acts on augmented state-space {, Q, X},

and each iteration has 3 distinct stages:

1. Given the parameter values (A, Q) use the second form of the the forward-
backward algorithm (Equations 2 and 3 of Section 2) to simulate the state

of the hidden chain X, at the start and end of the observation interval

(t,, = 0 and tps = t;,,,) and at a set of time points #{,...,¢,. For data
format D1 #|,...,t! correspond to event times; for formats D2 and D3
th,.... 1, are the end-points of accumulation intervals.

2. Given the parameter values and the finite set of states produced in stage
1, apply the technique of Section 3 to each interval in turn to simulate the

full underlying hidden chain X; from it’s exact conditional distribution.

3. Simulate a new set of parameter values.

We now describe how each of the stages may be implemented for each of the

three data formats.

14



Data format D1

For stage 1 we apply the forward-backward algorithm of section 2 modified
to take account of the fact that observation times ¢}, ..., ¢, correspond exactly
to events of the observed process and that therefore there are no Y-events be-
tween observation times. For the k' interval, which has width t;, =t — #,_,,
the transition matrix is T®) = @ A% and the likelihood vector for the k%
observation point is 1%) = .

This process is exactly equivalent to straightforward application of the sec-
ond form of the forward-backward algorithm to the meta-process W, of section
4.1.1 on the extended state space {1,...,d, 1x}, but replacing the d-dimensional
vector 1 with the d+ 1-dimensional vector (1,...,1,0)". For the k" interval, the
transition matrix is now T®*) = eGwh  where G, is defined in (7) and ¢S+t is
given explicitly in (8). The likelihood vector is 1%) = (X, 0)".

Stage 2 applies the technique of Section 3 directly to extended state space
{1,...,d,1*} with generator matrix G.

Figure 1 shows the first two stages for data format D1.

Stage 3 is especially simple using our conjugate priors. The likelihood for the

full data (observed data and path of hidden chain) is:

d d
L(w, Q. A) ox sy x [T TT (a7 e ) x [ Ame ™" (12)
=1

i=1 j#i

Thus conditional on observing the path of the underlying hidden Markov
chain, the densities of the \;s are gamma. The joint conditional densities for
the p;s and the p;;s is proportional to the product of independent gamma and
Dirichlet distributions and the stationary probability of the hidden chain starting
in state sg. This latter distribution can be simulated from using rejection sam-
pling; proposing values from the respective gamma and Dirichlet distributions

and accepting then with the resulting stationary probability of s.

15
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Figure 1: the Gibbs sampler (a) first simulates the chain state at observation times
and the start and end time; for each interval it then simulates (b) the number of
dominating events and their positions, and finally (c) the state changes that may or
may not occur at these dominating events. The figure applies to a two-state chain

with Ao +¢g21 > A +qi12 .
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Data format D2
For stage 1 we apply the second form of the forward-backward algorithm
with likelihood vector 1¥) = 1 and transition matrix dependent on the binary

indicator (by) for the interval
Tk — pO P b

For stage 2 we first consider the meta-process W, on state space {1,...,d, 1*,...,d*}
with W, = X, when ¥, =0 and W, = X, otherwise.
This has generator matrix
Q-A A
0" Q

For a given interval suppose that we have simulated X; starting in state s

G’W:

and ending state s;. On the extended state space this corresponds to starting in
state sg and finishing in state s; if there have been no events over the interval,
otherwise finishing in sj . We simulate the underlying chain from the algorithm
of section 3. This also supplies the time of the first event in the interval, and the
state at the time of this event, which we use for simulating the new parameters
in stage 3.

In stage 3, for accumulation interval 7 define #;; as the amount of time that
the hidden chain spends in state j between the start of the interval and either
the time of the first event (if there is a first event) or the end of the interval.
Further let 7 = Z;:rll t;; be the known time that the hidden chain is in state j,
and nj the number of intervals for which the first event occurs while the hidden

Markov chain is in state 7. Then the full-data likelihood is

d g
Lz, t]Q, A) o vy, X H H (q:;je’Qifti) X H )\;.lje_’\f't;f (13)
=1

i=1 j#i

We then proceed as with data format D1.
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Data format D3

For this data format we consider the meta-process V; on extended state space
{1 d® 1® g 1lemas) o d(emas) 1%} ag defined in section 4.1.2.

For the application of the forward-backward algorithm in stage 1, the transi-
tion matrices are T®) = P(%) and the likelihood vectors are 1¥) = 1. For stage 2,
in simulating from the exact distribution of the underlying chain for an interval
where the start state is sg, the end state is s; and there are ¢, events observed
we use the generator matrix Gy as defined in (11) with start state sy but end
state s\,
The algorithm also simulates from the exact distribution of the times at which

each of the ¢; events occurs over the interval, therefore we may perform stage 3

exactly as for data format D1.

6 Analysis of Chi site data for E.col:

6.1 Background and the E.col: data

In recent years there has been an explosion in the amount of data describing
both the genomes of different organisms, and the biological processes that effect
the evolution of these genomes. There is much current interest in understanding
the function of different features of the genome and what affects the biological
processes such as mutation and recombination. One approach to learning about
these is via genome segmentation (e.g. Li et al., 2002): partitioning a genome into
regions that are homogeneous in terms of some characteristic (e.g GC content),
and then looking for correlations between this characteristic and either another
characteristic, or a biological process of interest.

Here we consider segmentation of a bacterial genome based on the rate of

occurence of a particular DNA motif - called the Chi site. The Chi site is

18
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Figure 2: schematic of the leading and lagging strands on the inner and outer rings of
the E.coli genome split by the replication origin (O) and terminus (T), together with

the direction relevant for Chi site identification.

a motif of 8 basepairs: GCTGGTGG. The Chi site is of interest because it
stimulates DNA repair by homologous recombination (Gruss and Michel, 2001),
so the occurence of Chi sites has been conjectured to be related to recombination
hotspots.

Our data is for E.coli DNA and consists of the position (in bases) of Chi sites
along the genome. Figure 2 shows a schematic of the circular double stranded
DNA genome of E.coli, with the two strands represented by the inner and outer
rings. There is a 1-1 mapping of bases between the outer and inner strands (C
< G and A < T) so that each uniquely determines the other. The figure also
indicates a directionality associated with different halves of each strand as split
by the replication origin (O) and terminus (T). The molecular mechanisms of
DNA replication differ between the two half-strands and they are termed leading
and lagging, as indicated in the figure.

The 1-1 mapping between base pairs together with the reversing of direc-
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tionality between inner and outer strands implies that searching the Chi site in
the outer strand is equivalent to searching for CCACCAGC in the inner strand.
This sequence is different enough from the sequence of the Chi site in the inner
strand, that occurrences of the Chi site in inner and outer strands are effectively
independent. Occurence of Chi sites in leading and lagging halves are also inde-
pendent since these are separate parts of the genome. Thus our data consists of
four independent sets of positions of Chi sites - along leading and lagging halves
of both inner and outer strands. Figure 3 shows the cumulative number of events
along the genome for each of these data sets.

The replication and repair mechanisms for leading strands are different to
those for lagging strands so in general we might expect them to have different
compositional properties (densities of nucleotides and oligonucleotides). A bias
in the frequency of Chi sites favouring leading strands has been noted in several
genomes, including E.coli (e.g. Karoui et al., 1999) and is evident from the figure.
A more open question is whether there is variation within the leading and/or
lagging strands, rather than just between the leading and lagging strands.

Our aim is to first determine whether Chi sites appear to occur uniformly
at random within each of the leading and lagging strands, or whether there is
evidence of the intensity of the occurence of Chi sites varying across either strand.
Secondly, if there is variation then we would like to infer the regions with strong
evidence for either a high or low intensity of Chi sites.

The E.coli genome (defined as single strand length) is 4 639 675 bases long
so each of the individual halves are 2319.838 kilobases (kb) long. Henceforth we

use units of kb.
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Figure 3: cumulative number of occurences of the Chi site along the genome for
leading (+) and lagging (A) halves of the outer strand and leading (x) and lagging
(V) halves of the inner strand.
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6.2 Model and prior

We analyse the positions of occurences of the Chi site along first leading then
lagging strands using our Gibbs sampler. These positions are discrete bases
and our Gibbs sampler applies to continuous data, however each of the four
strands is over 2319kb long and contains less than 400 occurences of the 8-
base Chi site, so it is reasonable to model this discrete process as continuous.
Furthermore, a straightforward approach to discrete modelling would involve
applying the forward-backward algorithm across the entire genome, which would
be computationally prohibitive.

One of our aims is to perform model choice, and the choice of model will
depend on the priors for each model; in particular we cannot use uninformative
priors (e.g. Bernardo and Smith, 1995, Chapter 6). For the results we present
here we take exponential priors (that is gamma densities with shape parameters
equal to 1) for the A;s and the p;s (gamma densities with shape parameter of less
than 1 will lead to posteriors with an infinite density at 0); and uniform priors
for the vectors of transition probabilities.

We first analyse the inner leading and lagging strands and use the results
from these to inform priors for analyses of the outer leading and lagging strands,
which we use to perform model choice. We also tested robustness of our results
to variation in the priors.

We analyse the inner strands using exponential priors, the means of which are
chosen empirically from the data for each strand. The mean for all A\ parameters
is set to n/tys, where n and t,; are respectively the number of Chi sites and
the total length in kb of the strand. The mean for all ¢ parameters needs to be
somewhere between 1/t,,s and n/t.s for an analysis to be feasible so we set it to
/1 /tops. These latter choices are rather arbitrary, but the resulting posteriors

are only used to inform the (weak) priors for the analyses of the outer strands.
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Since the priors for the inner strand are exchangeable and the likelihood of an
MMPP is invariant under permutation of the states, so too is the joint posterior.
We therefore order the results from the analysis of the inner strand such that
A1 < Ay and use the posterior means as means for the exponential priors for the
analysis of the outer strands. Since the runs for the outer strands have non-
exchangeable priors, we may not order the output and must treat it exactly as
it appears.

For each strand we analyse the 1-d case analytically and the 2-d and 3-d cases
using 100000 iterations of our Gibbs sampler. Gibbs sampler code was written
in C and, when run on an AMD Athlon 1458MHz CPU, took approximately 11
minutes to perform 100000 iterations on the outer lagging strand. This strand
contains 117 Chi-sites.

Matrix exponentials were calculated by truncating (4). The truncation was
set so that the error in each element of the matrix exponential was less than a
pre-determined tolerance (this was efficient as errors decay faster than geomet-
rically, and accurate as it involves summing only positive values). The sum can
be evaluated efficiently for all intervals lengths by calculating and storing the
required powers of M once for each iteration. The powers of M are also then

used when simulating the underlying hidden chain.

6.3 Results

Figure 4 shows trace plots for the first 20 000 iterations and ACF’s over the
first 10 000 iterations for the 2-d run on the lagging strand of the outer ring.
The trace plot for A\; shows one of only 6 mode-switch-and-return’s (all brief),
indicating that the different priors fix quite firmly the ordering of the states.
These brief switches do however exert a strong (and spurious for our purposes)

influence on the ACF’s, and so we show ACF’s for a period in which there is no
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Figure 4:  trace plots for the first 20 000 iterations and and ACF’s for the first
10 000 iterations of the Gibbs sampler for the lagging strand of the outer ring with

non-exchangeable priors derived from the run for the lagging strand of the inner ring.
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Dataset ‘ 1-D ‘ 2-D ‘ 3-D
lagging (outer) | <0.01 | 0.83 | 0.17
leading (outer) | 0.30 | 0.44 | 0.26

Table 1: Posterior model probabilities for leading and lagging halves of the outer

strand.

mode-switching; the mixing appears to be satisfactory.

Posterior model probabilities for the leading and lagging strands were calcu-
lated using the method of Chib (1995) and are given Table 1. They indicate a
clear choice of a two-dimensional model over a one-dimensional model for the
lagging strand. There is also substantial evidence for a two-dimensional model
in preference to a three-dimensional model. From the model probabilities alone
there is nothing to choose between one, two, and three dimensional models for
leading strands.

For the two-dimensional model for lagging strands the posterior mean pa-
rameter values correspond to intensities of 20.8 and 92.1 Chi sites per megabase
(Mb), and an intensity of 16.0 transfers per Mb from the lower state to the higher
state and 21.1 transfers per Mb from the higher state to the lower state. The
one-dimensional model for leading strands has posterior mean intensity of 164.7
Chi sites per Mb.

Posterior model probabilities may be sensitive to the exact prior used, and
since the data contains less information about the ¢ parameters than the A pa-
rameters, the ¢ priors may be particularly influential. We performed further
analyses of the outer and inner rings with exchangeable exponential priors for
A and with exchangeable exponential, (approximately) normal, and truncated
exponential priors for ¢. There was little change in the posterior means for or-

dered (A1, \2), but a great deal of variability in (g2, ¢21) as expected. However
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the posterior model probabilities always indicated at least a two-state model for
lagging strands and little to choose between one and two state models for leading
strands.

A possible biological explanation for our results is given by how replication
differs on leading and lagging strands. Leading DNA strands are replicated
continuously whereas lagging strands are replicated in fragments. It may be
the fragmentary nature of replication that is causing the hetrogeneity in rate of
occurrence of Chi sites.

We can use the output of the Gibbs sampler to perform segmentation of
the lagging strands based on the intensity of the occurence of Chi sites. Fig-
ure 5 plots the mean (over 1000 chains sampled every 100 iterations) intensity
against position along the genome. This gives a ’smoothed signal’ of Chi site
intensity which could be used to evaluate correlations with (say) recombination
rates across the genome. An alternative segmentation might be based on the
posterior probabilities that a given point along the genome is in each of the pos-
sible states - for this segementation, at each point the chain is simply set to the

state with the highest posterior probability.

7 Discussion

We have presented a novel approach to simulating directly from the conditional
distribution of a continuous time Markov process and shown how this can be used
to implement a Gibbs sampler for analysing MMPPs. The Gibbs sampler can
analyse data where the event-times are directly observed, and also data where
the number of events or even only the presence/absence of events is known for a
sequence of time intervals.

The Gibbs sampler has a number of advantages over standard Metropolis-

26



lambda mean from 1000 chains

0.10
|

mean intensity

0.02
|

T T T T T
o 500 1000 1500 2000

distance along chain

Figure 5: mean A value from 1000 chains at each point in the lagging strand
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Hastings samplers. Firstly, the Gibbs sampler requires no tuning; tuning for
Metropolis-Hastings algorithms can be time consuming - especially for long
datasets where the algorithm takes longer to run and for algorithms involving
blocking of parameters. Further such tuning is valid for the area of the poste-
rior being explored whilst the tuning takes place (hopefully the mode); there is
no guarantee that it will be appropriate for as yet unseen tail areas that the
algorithm should eventually explore.

Secondly, a by-product of the Gibbs sampler is that we can investigate the
posterior distribution of the underlying chain. This allowed us to identify regions
of high intensity of Chi site occurences on the lagging strand of E.coli DNA.

There has been previous work on developing a Gibbs sampler for MMPP’s.
Scott (1999) and Scott and Smyth (2003) present an approximate Gibbs sampler
that can be applied to certain MMPP’s, assuming the event times are directly
observed. Their approximation is to assume that certain state changes coincide
precisely with observed events. In many situations this approximation will be
negligible; Scott (1999) models times at which a bank account is accessed, where
a criminal may or may not have obtained the bank details; it is argued that it
is sensible to define the arrival of a criminal as the time at which he/she first
accesses the account. Further Scott and Smyth (2003) argue that forcing state
changes to start and end at event-times ‘eliminates the possibility of patho-
logical bursts containing no events’. However their Gibbs sampler also places
restrictions on the allowable state changes: all transitions to states with lower
intensities than the current state are permitted, but out of all the (ordered) states
with higher intensity than the current state, transitions are only permitted to
the state immediately adjacent to the current one. Also the approximation of
restricting state changes to event times will become less accurate as the rates of

the generator for the hidden chain increase towards the same order of magnitude
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as the intensities of the observed process. Our Gibbs sampler avoids these issues
and there is little extra cost in implementing it.

Blackwell (2003) and Bladt and Sorensen (2005) use rejection sampling to
sample from the exact distribution of a discretely observed continuous-time
Markov process. A chain is simulated forward from a given observed state, and
if the simulated state at the next observation time does not match the corre-
sponding observed state then the chain is rejected and the process repeated until
a match is achieved. A similar technique could replace stage 2 of our Gibbs sam-
pler, where we simulate from the hidden chain and the observed event process
and accept the hidden chain if the chain finishes in the correct state and there
are no observed events. This is efficent only when the number of rejected chains
is small. It is straightforward to calculate the expected number of simulations
until acceptance for an interval of known length given the start and end states.
We calculated this for the simulated states at event times at every iteration of
our Gibbs sampler for every one of the 1164 intervals in a data set simulated
over an observation window of 100 seconds with intensities A\; = 10, Ay = 13 and
rates for the hidden Markov chain ¢ = g1 = 1. On average for about 700 of
the intervals 3 or fewer chain simulations were expected to be required. However
the distribution of the expected number of simulations had a very heavy right
hand tail, with about 200 intervals requiring at least 10 simulations and about
20 requiring more than 100 simulations, so that the mean expected number of
simulations per interval was around 20. This number is likely to increase as the
number of hidden states increases. In practice stage 2 of our Gibbs sampler takes
a very small proportion of the CPU time and this would be likely to remain small
if rejection sampling were to be used instead, unless the number of rejections was
large.

We considered the application of MMPPs to modelling the occurence of a
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specific DNA motif in E.coli. We found evidence for heterogeneity in the occur-
rence of this DNA motif, the Chi site, in the lagging strand; which may have
a biological explanation in terms of the replication process on this strand. The
output of our Gibbs sampler also enables us to segment the lagging strand into
regions of high and low intensity of these Chi sites. Ideally we would like to use
this segmentation to test for correlation of high Chi site intensity with regions
of high recombination rates, but unfortunately data is not currently available on

the variation in recombination rate in FE.cols.

A computer program, written in C, which implements the Gibbs sampler for
event-time data is available from:

http://www.maths.lancs.ac.uk/~sherlocc/MMPP /index.html

Acknowledgements: We dedicate this paper to the memory of Nick Smith
who helped with the application of our method to the analysis of E.Coli DNA.
The first author acknowledges support from EPSRC grants GR/R91724/01 and
GR/T19698/01.

References

Asmussen, S. (2000). Matrix-analytic models and their analysis. Scandinavian

Journal of Statistics 27, 193-226.

Baum, L. E., Petrie, T., Soules, G. and Weiss, N. (1970). A maximisation tech-
nique occuring in the statistical analysis of probababilstic functions of Markov

chains. The Annals of Mathematical Statistics 41, 164-171.

Bernardo, J. M. and Smith, A. F. M. (1995). Bayesian Theory. Wiley, Chichester,
UK.

30



Blackwell, P. G. (2003). Bayesian inference for Markov processes with diffusion
and discrete components. Biometrika 90, 613-627.

Bladt, M. and Sorensen, M. (2005). Statistical inference for discretely observed

Markov jump processes. Journal of the Royal Statistical Socienty, Series B 67,
395-410.

Burzykowski, T., Szubiakowski, J. and Ryden, T. (2003). Analysis of photon
count data from single-molecule fluorescence experiments. Chemical Physics

288, 291-307.

Chib, S. (1995). Marginal likelihood from the Gibbs output. Journal of the Amer-
ican Statistical Association 90, 1313-1321.

Davison, A. C. and Ramesh, N. I. (1996). Some models for discretised series of

events. Journal of the American Statistical Association 91, 601-609.

Fearnhead, P. and Meligkotsidou, L. (2004). Exact filtering for partially-observed
continuous-time Markov models. Journal of the Royal Statistical Society, series

B 66, 771-789.

Fischer, W. and Meier-Hellstern, K. (1992). The Markov-modulated Poisson pro-
cess (MMPP) cookbook. Performance evaluation 18, 149-171.

Gilks, W. R., Richardson, S. and Spiegelhalter, D. J. (1996). Markov Chain
Monte Carlo in practice. Chapman and Hall, London, UK.

Gruss, A. and Michel, B. (2001). The replication-recombination connection: in-

sights from genomics. Current Opinion in Microbiology 4, 595-601.

Karoui, M. E., Biaudet, V., Schbath, S. and Gruss, A. (1999). Characteristics of
chi distribution on different bacterial genomes. Res. Microbiol. 150, 579-587.

31



Kou, S. C., Xie, X. S. and Liu, J. S. (2005). Bayesian analysis of single-molecule
experimental data. Appl. Statist. 54, 1-28.

Li, W., Bernaola-Galvan, P., Haghighi, F. and Grosse, 1. (2002). Applications
of recursive segmentation to the analysis of DNA sequences. Computers and

Chemistry 26, 491-510.

Ross, S. (1996). Stochastic Processes, 2nd Ed.. John Wiley and Sons, Inc., New
York.

Ryden, T. (1996). An EM algorithm for estimation in Markov-modulated Poisson
processes. Computational Statistics 21, 431-447.

Scott, S. L. (1999). Bayesian analysis of a two-state Markov modulated Poisson
process. Journal of Computational and Graphical Statistics 8, 662—670.

Scott, S. L. and Smyth, P. (2003). The Markov modulated Poisson process and
Markov Poisson cascade with applications to web traffic modelling. Bayesian

Statistics 7, 1-10.

Sherlock, C. (2005). In discussion of 'Bayesian analysis of single-molecule exper-

imental data’. Journal of the Royal Statistical Society, Series C 54, 500.

32



