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Summary: A Markov modulated Poisson pro
ess (MMPP) is a Poisson pro
esswhose intensity varies a

ording to a Markov pro
ess. We present a novel te
h-nique for simulating from the exa
t distribution of a 
ontinuous time Markov
hain over an interval given the start and end states and the in�nitesimal gener-ator, and use this to 
reate a Gibbs sampler whi
h samples from the exa
t dis-tribution of the hidden Markov 
hain in an MMPP. We apply the Gibbs samplerto modelling the o

urren
e of a rare DNA motif (the Chi site) and to inferringregions of the genome with eviden
e of high or low intensities for o

urren
es ofthis site.Keywords: Forward-Ba
kward Algorithm, Genome Segmentation, Gibbs Sam-pler
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1 Introdu
tionA Markov Modulated Poisson Pro
ess (MMPP) is a Poisson pro
ess whose in-tensity depends on the 
urrent state of an independently evolving 
ontinuoustime Markov 
hain. Points from the MMPP are often referred to as the observeddata and the underlying Markov 
hain as the hidden data.MMPP's are used in modelling a variety of phenomena. For example, thearrivals of photons from single mole
ule 
uores
en
e experiments (Burzykowskiet al., 2003; Kou et al., 2005), where the arrival rate of photons at a re
eptoris modulated by the state of a mole
ule whi
h (in the simplest model formula-tion) alternates between its ground state and an ex
ited state. Other examplesin
lude, wet deposition of a radionu
lide emitted from a point sour
e (Davisonand Ramesh, 1996); frequen
y of bank transa
tions (S
ott, 1999); requests forweb pages from users of the World Wide Web (S
ott and Smyth, 2003); mod-elling over
ow in tele
ommuni
ations networks; and modelling pa
ketised voi
eand data streams (Fis
her and Meier-Hellstern, 1992). Later in this paper weuse MMPPs to model the o

uren
e of a rare DNA motif in ba
terial genomes.We fo
us on inferen
e of both the parameters and hidden state of MMPPs.The type of data available varies from appli
ation to appli
ation. In some appli-
ations the exa
t timings of all observed events are known and in others data area

umulated over �xed intervals. In the latter situation the observed data oftenappear as either a 
ount of the number of events in ea
h interval or a binaryindi
ation for ea
h interval as to whether there were no events or at least oneevent.MMPP parameters 
an be �tted to data by mat
hing 
ertain theoreti
al mo-ments to those observed (see Fis
her and Meier-Hellstern (1992) and referen
estherein). However, it is possible to 
al
ulate the likelihood of arrival data foran MMPP (for example Asmussen (2000); see also Se
tion 4). Ryden (1996)2



summarises several likelihood approa
hes.Here we 
onsider Bayesian analysis and fo
us on exploring the posterior dis-tribution via Markov 
hain Monte Carlo. Metropolis-Hastings algorithms (e.g.Gilks et al., 1996) provide a standard me
hanism for Bayesian inferen
e aboutparameters when the likelihood is 
omputable. This approa
h is employed forexample by Kou et al. (2005). Alternatively an approximate Gibbs sampler hasbeen developed in S
ott (1999) and S
ott and Smyth (2003). This Gibbs sam-pler is only appli
able to event-time data, and restri
ts the possible transitionsof the underlying Markov 
hain. The approximation is based on requiring that
ertain transitions of the underlying 
hain 
an only o

ur at event-times. How-ever for the examples 
onsidered in S
ott (1999) and S
ott and Smyth (2003)this approximate Gibbs sampler is very eÆ
ient.Here we present an exa
t Gibbs sampler whi
h, 
onditional on the data,samples alternately from the true 
onditional distribution of the hidden 
haingiven the parameters and then the 
onditional distribution of the parametersgiven the hidden 
hain. This Gibbs sampler 
an analyse data in any of thethree forms (exa
t timings, and interval 
ounts or binary indi
ators) outlinedearlier in this se
tion, and 
an allow for a general transition matrix for the stateof the hidden the Markov 
hain. It also avoids the simplifying approximationused by S
ott (1999). An advantage of the Gibbs sampler over a Metropolis-Hastings s
heme is that the Gibbs sampler does not need to be tuned. TheGibbs sampler also allows dire
tly for inferen
e about the hidden states throughapproximate samples from their posterior distribution. This feature is importantfor the appli
ation in genomi
s that we 
onsider.The main novelty in the Gibbs sampler is a dire
t simulation algorithm for the
onditional distribution of the 
omplete 
ontinuous time path of the hidden state.This is an extension of the forward-ba
kward algorithm of Baum et al. (1970) to3




ontinuous time, and an extension of the ideas of Fearnhead and Meligkotsidou(2004). It 
an be applied to general 
ontinuous time Markov pro
esses andprovides an alternative to the reje
tion sampling algorithms of Bla
kwell (2003)and Bladt and Sorensen (2005). We des
ribe the forward-ba
kward algorithmin Se
tion 2 and present its extension to 
ontinuous time Markov pro
ess inSe
tion 3. We then fo
us on MMPPs, reviewing the derivation of the likelihoodin Se
tion 4, and present the Gibbs sampler in 5. We then the Gibbs sampler toanalyse data of the o

uren
e of a DNA motif, known as the Chi sites, in E. 
oliin Se
tion 6 and the paper 
on
ludes with a dis
ussion.2 The forward-ba
kward algorithmThe forward-ba
kward algorithm (Baum et al., 1970) applies to any dis
retelyobserved Hidden Markov Model (HMM) and allows sampling of the state of thehidden 
hain at the observation times given the states at the start and end of theobservation window. The algorithm is easily extended to the 
ase where there isa prior distribution on the initial state and no knowledge of the end state of the
hain.We �rst des
ribe a general HMM. Let an unobserved (dis
rete or 
ontinuoustime) Markov 
hain evolve over a state spa
e of 
ardinality d. We observe ase
ond pro
ess over a window [0; tobs℄ at spe
i�
 times t01; : : : ; t0n. Suppose thatthe value of the observed pro
ess at time t0k is dk, and de�ne d := (d1; : : : ; dn)t.For notational 
onvenien
e de�ne t00 = 0, t0n+1 = tobs and t0 = (t00; : : : ; t0n+1).Also write sk for the state of the unobserved Markov 
hain at time t0k. Thelikelihood of the observed pro
ess depends on the state of the hidden pro
ess viaa likelihood ve
tor l(k) with k = 1; : : : ; n where l(k)i := P (dkjSk = i). From thisde�ne a likelihood matrix L(k) = diag(l(k)).4



Let T(k) be the kth transition matrix of the Markov 
hain (i.e. T (k)ij is theprobability that the unobserved pro
ess is in state j just before t0k given that itis in state i at t0k�1.)We de�ne probability matri
esA(n+1)s;sn+1 = P (sn+1jsn = s)A(k)s;sn+1 = P (dk; : : : ; dn; sn+1jsk�1 = s) (0 < k � n)And note thatP (dk; : : : ; dn; sn+1jsk�1) = dXsk=1P (skjsk�1)P (dkjsk)P (dk+1; : : : ; dn; sn+1jsk)Therefore the matri
es may be 
al
ulated via a ba
kwards re
ursionA(n+1) = T(n+1)A(k) = T(k)L(k)A(k+1) (0 < k � n)These matri
es a

umulate information about the 
hain through the data. The�nal a

umulation step 
reates A(0), where A(0)s0;sn+1 = P (d; sn+1js0) is propor-tional to the likelihood of the observed data given the start and end states.Using the Markov property we therefore haveP (Sk = sj d; sk�1; sn+1) = P (Sk = sj dk; : : : ; dn; sk�1; sn+1)= T (k)sk�1;s l(k)s A(k+1)s;sn+1A(k)sk�1;sn+1 (1)Using (1) we may pro
eed forwards through the observation times t01; : : : t0n,simulating the state at ea
h observation point in turn. This algorithm is oftenpresented in the equivalent formulation of a forwards a

umulation of informationand a ba
kwards simulation step through the observation times.If the start and end states of the 
hain are unknown, but a prior distribution� on the state of the hidden pro
ess is provided, then with a slight adjustment5



to the algorithm we may simulate the states at the start and end times of the
hain as well as at the observation times.The start state is simulated fromP (S0 = sjd) = �s [A(1)1℄s�t A(1)1 (2)where 1 is the d-dimensional ve
tor of ones.The state sk (k > 0) is then simulated fromP (Sk = sjd; sk�1) = T (k)sk�1;s l(k)s [A(k+1)1℄s[A(k)1℄sk�1 (3)The observation times in a Markov Modulated Poisson Pro
ess 
orrespondto a
tual events from the observed Poisson pro
ess. Therefore not only do theobservations 
ontain information about the state of the hidden 
hain, but so dothe intervals between observations, sin
e these 
ontain no events. In Se
tion 4 wederive likelihoods through a

umulation steps modi�ed to take this into a

ount.In a similar way we 
an use the forward-ba
kward algorithm to simulate the stateof the hidden 
hain at observation times for the �rst stage of our Gibbs sampler.The se
ond stage of the Gibbs sampler simulates a realisation from the exa
tdistribution of the full underlying Markov 
hain 
onditional on the data. Thisis more 
hallenging and relies on a te
hnique for simulating a realisation from a
ontinuous time Markov 
hain over an interval given the start and end states.3 Simulating a 
ontinuous time Markov 
hainover an interval given the start and end statesLet 
ontinuous time Markov 
hain Wt have generator matrix G, and let it startthe interval [0; t℄ in state s0 and �nish in state st. We des
ribe a method forsimulating from the exa
t 
onditional distribution of the 
hain given the startand end states. 6



The behaviour ofWt on entering state i until leaving that state 
an be thoughtof in terms of a Poisson pro
ess of rate �i := �gii and a set of transition proba-bilities pij = gij=�i (i 6= j)= 0 (i = j)The Poisson pro
ess is started as soon as the 
hain enters state i; at the �rstevent from the pro
ess the 
hain 
hanges to a state j determined at random usingthe transition probabilities for state i. A new Poisson pro
ess is then initiatedwith intensity 
orresponding to the new state.An alternative formulation is based on the idea of uniformisation (e.g. Ross,1996). We apply a single dominating Poisson pro
ess Ut to determine when tran-sitions may o

ur; 
ru
ially the intensity � of the Poisson pro
ess is independentof the 
hain state. We 
all the events in this dominating Poisson pro
ess \U -events". Probabilities for the state transitions at these U -events are de�ned interms of a transition matrix M.The intensity of the dominating pro
ess must ne
essarily be at least as large asthe largest (in modulus) diagonal element of G. With � = max �i the transitionmatrix for the dis
rete time sequen
e of states at U-events isM := 1�G+ I:For any state i with �i < �, M spe
i�es a non-zero probability of no 
hangein the state, so that the rate of events that 
hange state is �i. Considering aninterval of length t straightforward expansion of the transition matrix for theinterval gives eGt = e��Ite�Mt = 1Xr=0 e��t (�t)rr! Mr (4)The (i; j)th element of the left hand side is P (Wt = jjW0 = i). If we de�neNU(t) as the number of U -events over the interval of length t then the (i; j)th7



element on right hand side 
an be interpreted as1Xr=0 P (NU(t) = r) P (Wt = jjW0 = i; NU(t) = r)Thus 
onditional on start and end states s0 and st, the distribution of thenumber of dominating U -events is given byP (NU(t) = r) = e��t (�t)rr! [Mr℄s0;st[eGt℄s0;st (5)We have used a single dominating Poisson pro
ess with �xed intensity inde-pendent of the 
hain state. Therefore 
onditional on the number of dominatingevents, the positions of these events and the state 
hanges that o

ur at theevents are independent of ea
h other and may be simulated separately. Further-more, sin
e Ut is a simple Poisson pro
ess the U events are distributed uniformlyover the interval [0; t℄.Suppose that r dominating U events are simulated at times t�1; : : : ; t�r, and letthese 
orrespond to (possible) 
hanges of state of Wt to s�1; : : : ; s�r. For 
onve-nien
e we de�ne t�0 := 0 and s�0 := s0.Now P (Wt = stjW0 = s0) = [Mr℄s0;stThe start and end state for ea
h interval are assumed known, and so weemploy the forward-ba
kward algorithm of Se
tion 2 with L(k) = I and T(k) =Mto simulate the state 
hange at ea
h U eventP (Wt�j = sjWt�j�1 = s�j�1;Wt = st) = [M℄s�j�1;s[Mr�j℄s;st[Mr�j+1℄s�j�1;st (j = 1; : : : ; r) (6)Our algorithm then be
omes(i) Simulate the number of dominating events using (5).(ii) Simulate the position of ea
h dominating event from a uniform distributionover the interval [0,t℄. 8



(iii) Simulate the state 
hanges at the dominating events using (6).4 Likelihood for MMPP'sWe now fo
us ex
lusively on MMPP's. Let a (hidden) 
ontinuous-time Markov
hain Xt on state spa
e f1; : : : ; dg have generator matrix Q and stationary dis-tribution �.An MMPP is a Poisson pro
ess Yt whose intensity is �i when Xt = i, but inall other ways is evolving independently of Xt. We write � := (�1; : : : ; �d)t and� := diag(�).We are interested in Bayesian inferen
e about �;Q; and Xt. Here we re-view derivations of likelihood for the three di�erent data types mentioned inthe introdu
tion. Likelihoods are required for inferen
e about � and Q usingMetropolis-Hastings s
hemes (see Se
tion 5). The a

umulation steps and ex-tended state spa
es used here are essential also for our Gibbs sampler whi
hallows inferen
e for �;Q; and Xt and is detailed in se
tion 5.2.The Y pro
ess is (fully or partially) observed over an interval [0; tobs℄ withtobs known and �xed in advan
e. We employ the symbol 1 for the matrix or(horizontal or verti
al) ve
tor all of whose elements are one, and similarly 0 is amatrix or ve
tor all of whose elements are zero.4.1 Derivation of the likelihood fun
tionWe are interested in inferen
e for three 
ommonly en
ountered data formatsD1 Exa
t times are re
orded for ea
h of the n observed events (see Kou et al.(2005), and S
ott and Smyth (2003) for example uses of this data format).D2 A �xed series of n+1 
ontiguous a

umulation intervals of length ti is used,9



and asso
iated with the ith interval is a binary indi
ator bi whi
h is zero ifthere are no Y -events over the interval and one otherwise (see for exampleDavison and Ramesh, 1996).D3 A �xed series of n+1 
ontiguous a

umulation intervals of length ti is used,and asso
iated with the ith interval is a 
ount 
i of the number of Y -eventsover the interval (see for example Burzykowski et al., 2003).In ea
h 
ase it is possible to derive the likelihood fun
tion. We summarise thethree derivations; for more details see Asmussen (2000), Davison and Ramesh(1996), and Burzykowski et al. (2003) respe
tively.4.1.1 Likelihood for event-time dataWe �rst 
onsider the data format D1. We write NY (t) for the number of Y -eventsin the interval [0; t℄, so that NY (0) = 0 and NY (tobs) = n, the total number ofevents. For notational 
onvenien
e we set t00 = 0, t0n+1 = tobs and let t01; : : : ; t0n bethe event times for the n events. De�ne tk = t0k � t0k�1; k = 1; : : : ; n + 1; theseare respe
tively the time from the start of the observation period to the �rstevent, the inter-event times, and the time from the last event until the end ofthe observation period. We de�ne t := (t1; : : : ; tn+1)t.We �rst derive a form forP (0)ij (t) := P (there are no Y events in (0; t) and Xt = j j X0 = i)We de�ne a meta-Markov pro
essWt on an extended state spa
e f1; : : : ; d; 1�g,and let Wt 
ombine Xt and Yt as follows: Wt mat
hes Xt exa
tly up until justbefore the �rst Y event. At the �rst su
h event W moves to the absorbing state1�. So if the �rst Y -event o

urs at time t0for t < t0; Wt = Xtfor t � t0; Wt = 1�10



The generator matrix for Wt isGw = 24 Q�� �0 0 35 (7)So the transition matrix at time t iseGwt = 24 e(Q��)t (Q��)�1(e(Q��)t � I)�0 1 35 (8)From the de�nition of W we see thatP (0)ij (t) = [e(Q��)t℄ij (9)So the likelihood of the observed data, and that the 
hain ends in state j giventhat it starts in state i is the (i; j)th element ofe(Q��)t1�e(Q��)t2� : : :�e(Q��)tn+1This is theA(0) matrix of the forward-ba
kward algorithm as des
ribed in Se
tion2. Assuming that the 
hain starts in its stationary distribution, the likelihood ofthe observed data is thereforeL(Q;�; t) = �te(Q��)t1� : : : e(Q��)tn�e(Q��)tn+11 (10)4.1.2 Likelihood for a

umulation interval formatsWe now 
onsider data formats D2 and D3 and for simpli
ity assume all theinterval lengths to be equal (ti = t� ; i = 1; : : : ; n + 1). Extension to the moregeneral 
ase is straightforward.De�neP (s)ij = P (there are s Y -events over (0; t�) and Xt� = jjX0 = i)℄11



and P ij = P (there is at least one Y -event over (0; t�) and Xt� = jjX0 = i)℄With bi as the binary indi
ator for at least one event in the ith interval, thelikelihood for D2 is therefore�t n+1Yi=1 P(0)1�bi P bi! 1and with 
ount 
i of the number of events for ea
h interval the likelihood for D3is �t n+1Yi=1 P(
i)! 1P(0) is given by (9) and so it remains to 
al
ulate the matri
es P(
) (
 > 0), andP. Sin
e the probability of �nishing interval (0; t�) in state j given starting statei is the (i; j)th element of eQt�, we see thatP = eQt� � e(Q��)t�For format D3 de�ne 
max = max 
i and 
reate a new meta-pro
ess Vt on statespa
e S = (1(0); : : : ; d(0); 1(1); : : : d(1); : : : ; 1(
max); : : : ; d(
max); 1�). If the number ofY -events observed up until time t in the a

umulation interval 
ontaining t isN�Y (t), then for N�Y (t) � 
max Vt = X(N�Y (t))t and otherwise Vt = 1�. For exampleif at time t, the hidden pro
ess is in state 3 and there have been 7 events so farin the a

umulation interval 
ontaining t, then the meta-pro
ess Vt is in state3(7)The generator matrix for Vt is
12



Gv =
26666666666664
Q�� � 0 : : : 0 00 Q�� � : : : 0 00 0 Q�� : : : 0 0: : : : : : : : : : : : : : : : : :0 0 0 : : : Q�� �0 0 0 : : : 0 0

37777777777775 (11)
and the blo
k of square matri
es 
omprising of the top d rows of eGvt� give the(d� d) 
onditional transition matri
es P(r).5 Bayesian approa
hWe are interested in Bayesian analysis of MMPP's. We �rst brie
y dis
ussthe 
hoi
e of priors, before des
ribing our new Gibbs sampling algorithm. Forba
kground on existing MCMC s
hemes for MMPPs see the introdu
tion andreferen
es therein.5.1 Choi
e of priorFor 
omputational simpli
ity we use 
onjugate priors for the parameters. If welet �i = �qi;i, be the rate that the hidden Markov 
hain leaves state i, andpi;j = qi;j=�i be the probability of a transition to state j(6= i) when we leavestate i, then we assume independent gamma priors for the �is and the �is andDiri
hlet priors for ea
h ve
tor of probabilities (pi;1; : : : ; pi;i�1; pi;i+1; : : : ; pi;d).Care must be taken with the parameters of these prior distributions. Inparti
ular, improper priors for the parameters 
an lead to improper posteriors(e.g. Sherlo
k, 2005). Also we would hope that ea
h qij < �i so that most visitsto a given state will 
ontain observed events, making it easier to identify the13



separate states, as well as to infer �i5.2 Gibbs samplerWe �rst introdu
e some notation. We write the state of the 
hain at event-times(or for D2 and D3 the end of ea
h time-interval) and at the start and end of theobservation period as Si = Xt0i . The distribution of the new parameter ve
tordepends on the underlying 
hain through the starting state (via �s0) and threefurther suÆ
ient statisti
s, whi
h we now de�ne.We write ~ti for the total time spent in state i by the hidden 
hain, rij forthe number of times the 
hain transitions from state i to state j (rii = 0 8i),and ni for the number of Y -events that o

ur while the 
hain is in state i. We
orrespondingly de�ne ~t = (~t1; : : : ; ~td)t, n = (n1; : : : ; nd)t, and R as the matrixwith elements rij . Our Gibbs sampler a
ts on augmented state-spa
e f�;Q; Xtg,and ea
h iteration has 3 distin
t stages:1. Given the parameter values (�;Q) use the se
ond form of the the forward-ba
kward algorithm (Equations 2 and 3 of Se
tion 2) to simulate the stateof the hidden 
hain Xt at the start and end of the observation interval(t00 = 0 and tobs = t0n+1) and at a set of time points t01; : : : ; t0n. For dataformat D1 t01; : : : ; t0n 
orrespond to event times; for formats D2 and D3t01; : : : ; t0n+1 are the end-points of a

umulation intervals.2. Given the parameter values and the �nite set of states produ
ed in stage1, apply the te
hnique of Se
tion 3 to ea
h interval in turn to simulate thefull underlying hidden 
hain Xt from it's exa
t 
onditional distribution.3. Simulate a new set of parameter values.We now des
ribe how ea
h of the stages may be implemented for ea
h of thethree data formats. 14



Data format D1For stage 1 we apply the forward-ba
kward algorithm of se
tion 2 modi�edto take a

ount of the fa
t that observation times t01; : : : ; t0n 
orrespond exa
tlyto events of the observed pro
ess and that therefore there are no Y -events be-tween observation times. For the kth interval, whi
h has width tk = t0k � t0k�1,the transition matrix is T(k) = e(Q��)tk , and the likelihood ve
tor for the kthobservation point is l(k) = �.This pro
ess is exa
tly equivalent to straightforward appli
ation of the se
-ond form of the forward-ba
kward algorithm to the meta-pro
ess Wt of se
tion4.1.1 on the extended state spa
e f1; : : : ; d; 1�g, but repla
ing the d-dimensionalve
tor 1 with the d+1-dimensional ve
tor (1; : : : ; 1; 0)t. For the kth interval, thetransition matrix is now T(k) = eGwtk , where Gw is de�ned in (7) and eGwt isgiven expli
itly in (8). The likelihood ve
tor is l(k) = (�; 0)t.Stage 2 applies the te
hnique of Se
tion 3 dire
tly to extended state spa
ef1; : : : ; d; 1�g with generator matrix Gw.Figure 1 shows the �rst two stages for data format D1.Stage 3 is espe
ially simple using our 
onjugate priors. The likelihood for thefull data (observed data and path of hidden 
hain) is:L(xt; tjQ;�) / �s0 � dYi=1Yj 6=i �qrijij e�qij~ti�� dYi=1 �nisi e��i~ti (12)Thus 
onditional on observing the path of the underlying hidden Markov
hain, the densities of the �is are gamma. The joint 
onditional densities forthe �is and the pijs is proportional to the produ
t of independent gamma andDiri
hlet distributions and the stationary probability of the hidden 
hain startingin state s0. This latter distribution 
an be simulated from using reje
tion sam-pling; proposing values from the respe
tive gamma and Diri
hlet distributionsand a

epting then with the resulting stationary probability of s0.15
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(a)
(b)(
)Figure 1: the Gibbs sampler (a) �rst simulates the 
hain state at observation timesand the start and end time; for ea
h interval it then simulates (b) the number ofdominating events and their positions, and �nally (
) the state 
hanges that may ormay not o

ur at these dominating events. The �gure applies to a two-state 
hainwith �2 + q21 > �1 + q12 .
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Data format D2For stage 1 we apply the se
ond form of the forward-ba
kward algorithmwith likelihood ve
tor l(k) = 1 and transition matrix dependent on the binaryindi
ator (bk) for the interval T(k) = P(0)1�bk P bkFor stage 2 we �rst 
onsider the meta-pro
essW t on state spa
e f1; : : : ; d; 1�; : : : ; d�gwith W t = Xt when Yt = 0 and W t = X�t otherwise.This has generator matrixGw = 24 Q�� �0� Q 35For a given interval suppose that we have simulated Xt starting in state s0and ending state s1. On the extended state spa
e this 
orresponds to starting instate s0 and �nishing in state s1 if there have been no events over the interval,otherwise �nishing in s�1 . We simulate the underlying 
hain from the algorithmof se
tion 3. This also supplies the time of the �rst event in the interval, and thestate at the time of this event, whi
h we use for simulating the new parametersin stage 3.In stage 3, for a

umulation interval i de�ne t�ij as the amount of time thatthe hidden 
hain spends in state j between the start of the interval and eitherthe time of the �rst event (if there is a �rst event) or the end of the interval.Further let t�j =Pn+1i=1 t�ij be the known time that the hidden 
hain is in state j,and n�j the number of intervals for whi
h the �rst event o

urs while the hiddenMarkov 
hain is in state j. Then the full-data likelihood isL(xt; tjQ;�) / �s0 � dYi=1Yj 6=i �qrijij e�qij~ti�� gYj=1 �n�jj e��jt�j (13)We then pro
eed as with data format D1.17



Data format D3For this data format we 
onsider the meta-pro
ess Vt on extended state spa
ef1(0); : : : ; d(0); 1(1); : : : d(1); : : : ; 1(
max); : : : ; d(
max); 1�g as de�ned in se
tion 4.1.2.For the appli
ation of the forward-ba
kward algorithm in stage 1, the transi-tion matri
es are T(k) = P(
k) and the likelihood ve
tors are l(k) = 1. For stage 2,in simulating from the exa
t distribution of the underlying 
hain for an intervalwhere the start state is s0, the end state is s1 and there are 
k events observedwe use the generator matrix Gv as de�ned in (11) with start state s0 but endstate s(
k)1 .The algorithm also simulates from the exa
t distribution of the times at whi
hea
h of the 
k events o

urs over the interval, therefore we may perform stage 3exa
tly as for data format D1.6 Analysis of Chi site data for E.
oli6.1 Ba
kground and the E.
oli dataIn re
ent years there has been an explosion in the amount of data des
ribingboth the genomes of di�erent organisms, and the biologi
al pro
esses that e�e
tthe evolution of these genomes. There is mu
h 
urrent interest in understandingthe fun
tion of di�erent features of the genome and what a�e
ts the biologi
alpro
esses su
h as mutation and re
ombination. One approa
h to learning aboutthese is via genome segmentation (e.g. Li et al., 2002): partitioning a genome intoregions that are homogeneous in terms of some 
hara
teristi
 (e.g GC 
ontent),and then looking for 
orrelations between this 
hara
teristi
 and either another
hara
teristi
, or a biologi
al pro
ess of interest.Here we 
onsider segmentation of a ba
terial genome based on the rate ofo

uren
e of a parti
ular DNA motif - 
alled the Chi site. The Chi site is18
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Figure 2: s
hemati
 of the leading and lagging strands on the inner and outer rings ofthe E.
oli genome split by the repli
ation origin (O) and terminus (T), together withthe dire
tion relevant for Chi site identi�
ation.a motif of 8 basepairs: GCTGGTGG. The Chi site is of interest be
ause itstimulates DNA repair by homologous re
ombination (Gruss and Mi
hel, 2001),so the o

uren
e of Chi sites has been 
onje
tured to be related to re
ombinationhotspots.Our data is for E.
oli DNA and 
onsists of the position (in bases) of Chi sitesalong the genome. Figure 2 shows a s
hemati
 of the 
ir
ular double strandedDNA genome of E.
oli, with the two strands represented by the inner and outerrings. There is a 1-1 mapping of bases between the outer and inner strands (C$ G and A $ T) so that ea
h uniquely determines the other. The �gure alsoindi
ates a dire
tionality asso
iated with di�erent halves of ea
h strand as splitby the repli
ation origin (O) and terminus (T). The mole
ular me
hanisms ofDNA repli
ation di�er between the two half-strands and they are termed leadingand lagging, as indi
ated in the �gure.The 1-1 mapping between base pairs together with the reversing of dire
-19



tionality between inner and outer strands implies that sear
hing the Chi site inthe outer strand is equivalent to sear
hing for CCACCAGC in the inner strand.This sequen
e is di�erent enough from the sequen
e of the Chi site in the innerstrand, that o

urren
es of the Chi site in inner and outer strands are e�e
tivelyindependent. O

uren
e of Chi sites in leading and lagging halves are also inde-pendent sin
e these are separate parts of the genome. Thus our data 
onsists offour independent sets of positions of Chi sites - along leading and lagging halvesof both inner and outer strands. Figure 3 shows the 
umulative number of eventsalong the genome for ea
h of these data sets.The repli
ation and repair me
hanisms for leading strands are di�erent tothose for lagging strands so in general we might expe
t them to have di�erent
ompositional properties (densities of nu
leotides and oligonu
leotides). A biasin the frequen
y of Chi sites favouring leading strands has been noted in severalgenomes, in
luding E.
oli (e.g. Karoui et al., 1999) and is evident from the �gure.A more open question is whether there is variation within the leading and/orlagging strands, rather than just between the leading and lagging strands.Our aim is to �rst determine whether Chi sites appear to o

ur uniformlyat random within ea
h of the leading and lagging strands, or whether there iseviden
e of the intensity of the o

uren
e of Chi sites varying a
ross either strand.Se
ondly, if there is variation then we would like to infer the regions with strongeviden
e for either a high or low intensity of Chi sites.The E.
oli genome (de�ned as single strand length) is 4 639 675 bases longso ea
h of the individual halves are 2319.838 kilobases (kb) long. Hen
eforth weuse units of kb.
20



0 500 1000 1500 2000

0
10

0
20

0
30

0

kB

Cu
mu

lat
ive

 #
 p

oin
ts

Figure 3: 
umulative number of o

uren
es of the Chi site along the genome forleading (+) and lagging (4) halves of the outer strand and leading (�) and lagging(r) halves of the inner strand.
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6.2 Model and priorWe analyse the positions of o

uren
es of the Chi site along �rst leading thenlagging strands using our Gibbs sampler. These positions are dis
rete basesand our Gibbs sampler applies to 
ontinuous data, however ea
h of the fourstrands is over 2319kb long and 
ontains less than 400 o

uren
es of the 8-base Chi site, so it is reasonable to model this dis
rete pro
ess as 
ontinuous.Furthermore, a straightforward approa
h to dis
rete modelling would involveapplying the forward-ba
kward algorithm a
ross the entire genome, whi
h wouldbe 
omputationally prohibitive.One of our aims is to perform model 
hoi
e, and the 
hoi
e of model willdepend on the priors for ea
h model; in parti
ular we 
annot use uninformativepriors (e.g. Bernardo and Smith, 1995, Chapter 6). For the results we presenthere we take exponential priors (that is gamma densities with shape parametersequal to 1) for the �is and the �is (gamma densities with shape parameter of lessthan 1 will lead to posteriors with an in�nite density at 0); and uniform priorsfor the ve
tors of transition probabilities.We �rst analyse the inner leading and lagging strands and use the resultsfrom these to inform priors for analyses of the outer leading and lagging strands,whi
h we use to perform model 
hoi
e. We also tested robustness of our resultsto variation in the priors.We analyse the inner strands using exponential priors, the means of whi
h are
hosen empiri
ally from the data for ea
h strand. The mean for all � parametersis set to n=tobs, where n and tobs are respe
tively the number of Chi sites andthe total length in kb of the strand. The mean for all q parameters needs to besomewhere between 1=tobs and n=tobs for an analysis to be feasible so we set it topn=tobs. These latter 
hoi
es are rather arbitrary, but the resulting posteriorsare only used to inform the (weak) priors for the analyses of the outer strands.22



Sin
e the priors for the inner strand are ex
hangeable and the likelihood of anMMPP is invariant under permutation of the states, so too is the joint posterior.We therefore order the results from the analysis of the inner strand su
h that�1 � �2 and use the posterior means as means for the exponential priors for theanalysis of the outer strands. Sin
e the runs for the outer strands have non-ex
hangeable priors, we may not order the output and must treat it exa
tly asit appears.For ea
h strand we analyse the 1-d 
ase analyti
ally and the 2-d and 3-d 
asesusing 100000 iterations of our Gibbs sampler. Gibbs sampler 
ode was writtenin C and, when run on an AMD Athlon 1458MHz CPU, took approximately 11minutes to perform 100000 iterations on the outer lagging strand. This strand
ontains 117 Chi-sites.Matrix exponentials were 
al
ulated by trun
ating (4). The trun
ation wasset so that the error in ea
h element of the matrix exponential was less than apre-determined toleran
e (this was eÆ
ient as errors de
ay faster than geomet-ri
ally, and a

urate as it involves summing only positive values). The sum 
anbe evaluated eÆ
iently for all intervals lengths by 
al
ulating and storing therequired powers of M on
e for ea
h iteration. The powers of M are also thenused when simulating the underlying hidden 
hain.6.3 ResultsFigure 4 shows tra
e plots for the �rst 20 000 iterations and ACF's over the�rst 10 000 iterations for the 2-d run on the lagging strand of the outer ring.The tra
e plot for �1 shows one of only 6 mode-swit
h-and-return's (all brief),indi
ating that the di�erent priors �x quite �rmly the ordering of the states.These brief swit
hes do however exert a strong (and spurious for our purposes)in
uen
e on the ACF's, and so we show ACF's for a period in whi
h there is no23
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Figure 4: tra
e plots for the �rst 20 000 iterations and and ACF's for the �rst10 000 iterations of the Gibbs sampler for the lagging strand of the outer ring withnon-ex
hangeable priors derived from the run for the lagging strand of the inner ring.
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Dataset 1-D 2-D 3-Dlagging (outer) <0.01 0.83 0.17leading (outer) 0.30 0.44 0.26Table 1: Posterior model probabilities for leading and lagging halves of the outerstrand.mode-swit
hing; the mixing appears to be satisfa
tory.Posterior model probabilities for the leading and lagging strands were 
al
u-lated using the method of Chib (1995) and are given Table 1. They indi
ate a
lear 
hoi
e of a two-dimensional model over a one-dimensional model for thelagging strand. There is also substantial eviden
e for a two-dimensional modelin preferen
e to a three-dimensional model. From the model probabilities alonethere is nothing to 
hoose between one, two, and three dimensional models forleading strands.For the two-dimensional model for lagging strands the posterior mean pa-rameter values 
orrespond to intensities of 20.8 and 92.1 Chi sites per megabase(Mb), and an intensity of 16.0 transfers per Mb from the lower state to the higherstate and 21.1 transfers per Mb from the higher state to the lower state. Theone-dimensional model for leading strands has posterior mean intensity of 164.7Chi sites per Mb.Posterior model probabilities may be sensitive to the exa
t prior used, andsin
e the data 
ontains less information about the q parameters than the � pa-rameters, the q priors may be parti
ularly in
uential. We performed furtheranalyses of the outer and inner rings with ex
hangeable exponential priors for� and with ex
hangeable exponential, (approximately) normal, and trun
atedexponential priors for q. There was little 
hange in the posterior means for or-dered (�1; �2), but a great deal of variability in (q12; q21) as expe
ted. However25



the posterior model probabilities always indi
ated at least a two-state model forlagging strands and little to 
hoose between one and two state models for leadingstrands.A possible biologi
al explanation for our results is given by how repli
ationdi�ers on leading and lagging strands. Leading DNA strands are repli
ated
ontinuously whereas lagging strands are repli
ated in fragments. It may bethe fragmentary nature of repli
ation that is 
ausing the hetrogeneity in rate ofo

urren
e of Chi sites.We 
an use the output of the Gibbs sampler to perform segmentation ofthe lagging strands based on the intensity of the o

uren
e of Chi sites. Fig-ure 5 plots the mean (over 1000 
hains sampled every 100 iterations) intensityagainst position along the genome. This gives a 'smoothed signal' of Chi siteintensity whi
h 
ould be used to evaluate 
orrelations with (say) re
ombinationrates a
ross the genome. An alternative segmentation might be based on theposterior probabilities that a given point along the genome is in ea
h of the pos-sible states - for this segementation, at ea
h point the 
hain is simply set to thestate with the highest posterior probability.7 Dis
ussionWe have presented a novel approa
h to simulating dire
tly from the 
onditionaldistribution of a 
ontinuous time Markov pro
ess and shown how this 
an be usedto implement a Gibbs sampler for analysing MMPPs. The Gibbs sampler 
ananalyse data where the event-times are dire
tly observed, and also data wherethe number of events or even only the presen
e/absen
e of events is known for asequen
e of time intervals.The Gibbs sampler has a number of advantages over standard Metropolis-26
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Hastings samplers. Firstly, the Gibbs sampler requires no tuning; tuning forMetropolis-Hastings algorithms 
an be time 
onsuming - espe
ially for longdatasets where the algorithm takes longer to run and for algorithms involvingblo
king of parameters. Further su
h tuning is valid for the area of the poste-rior being explored whilst the tuning takes pla
e (hopefully the mode); there isno guarantee that it will be appropriate for as yet unseen tail areas that thealgorithm should eventually explore.Se
ondly, a by-produ
t of the Gibbs sampler is that we 
an investigate theposterior distribution of the underlying 
hain. This allowed us to identify regionsof high intensity of Chi site o

uren
es on the lagging strand of E.
oli DNA.There has been previous work on developing a Gibbs sampler for MMPP's.S
ott (1999) and S
ott and Smyth (2003) present an approximate Gibbs samplerthat 
an be applied to 
ertain MMPP's, assuming the event times are dire
tlyobserved. Their approximation is to assume that 
ertain state 
hanges 
oin
idepre
isely with observed events. In many situations this approximation will benegligible; S
ott (1999) models times at whi
h a bank a

ount is a

essed, wherea 
riminal may or may not have obtained the bank details; it is argued that itis sensible to de�ne the arrival of a 
riminal as the time at whi
h he/she �rsta

esses the a

ount. Further S
ott and Smyth (2003) argue that for
ing state
hanges to start and end at event-times `eliminates the possibility of patho-logi
al bursts 
ontaining no events'. However their Gibbs sampler also pla
esrestri
tions on the allowable state 
hanges: all transitions to states with lowerintensities than the 
urrent state are permitted, but out of all the (ordered) stateswith higher intensity than the 
urrent state, transitions are only permitted tothe state immediately adja
ent to the 
urrent one. Also the approximation ofrestri
ting state 
hanges to event times will be
ome less a

urate as the rates ofthe generator for the hidden 
hain in
rease towards the same order of magnitude28



as the intensities of the observed pro
ess. Our Gibbs sampler avoids these issuesand there is little extra 
ost in implementing it.Bla
kwell (2003) and Bladt and Sorensen (2005) use reje
tion sampling tosample from the exa
t distribution of a dis
retely observed 
ontinuous-timeMarkov pro
ess. A 
hain is simulated forward from a given observed state, andif the simulated state at the next observation time does not mat
h the 
orre-sponding observed state then the 
hain is reje
ted and the pro
ess repeated untila mat
h is a
hieved. A similar te
hnique 
ould repla
e stage 2 of our Gibbs sam-pler, where we simulate from the hidden 
hain and the observed event pro
essand a

ept the hidden 
hain if the 
hain �nishes in the 
orre
t state and thereare no observed events. This is eÆ
ent only when the number of reje
ted 
hainsis small. It is straightforward to 
al
ulate the expe
ted number of simulationsuntil a

eptan
e for an interval of known length given the start and end states.We 
al
ulated this for the simulated states at event times at every iteration ofour Gibbs sampler for every one of the 1164 intervals in a data set simulatedover an observation window of 100 se
onds with intensities �1 = 10; �2 = 13 andrates for the hidden Markov 
hain q12 = q21 = 1. On average for about 700 ofthe intervals 3 or fewer 
hain simulations were expe
ted to be required. Howeverthe distribution of the expe
ted number of simulations had a very heavy righthand tail, with about 200 intervals requiring at least 10 simulations and about20 requiring more than 100 simulations, so that the mean expe
ted number ofsimulations per interval was around 20. This number is likely to in
rease as thenumber of hidden states in
reases. In pra
ti
e stage 2 of our Gibbs sampler takesa very small proportion of the CPU time and this would be likely to remain smallif reje
tion sampling were to be used instead, unless the number of reje
tions waslarge.We 
onsidered the appli
ation of MMPPs to modelling the o

uren
e of a29



spe
i�
 DNA motif in E.
oli. We found eviden
e for heterogeneity in the o

ur-ren
e of this DNA motif, the Chi site, in the lagging strand; whi
h may havea biologi
al explanation in terms of the repli
ation pro
ess on this strand. Theoutput of our Gibbs sampler also enables us to segment the lagging strand intoregions of high and low intensity of these Chi sites. Ideally we would like to usethis segmentation to test for 
orrelation of high Chi site intensity with regionsof high re
ombination rates, but unfortunately data is not 
urrently available onthe variation in re
ombination rate in E.
oli.A 
omputer program, written in C, whi
h implements the Gibbs sampler forevent-time data is available from:http://www.maths.lan
s.a
.uk/�sherlo

/MMPP/index.htmlA
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