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Summary: A Markov modulated Poisson proess (MMPP) is a Poisson proesswhose intensity varies aording to a Markov proess. We present a novel teh-nique for simulating from the exat distribution of a ontinuous time Markovhain over an interval given the start and end states and the in�nitesimal gener-ator, and use this to reate a Gibbs sampler whih samples from the exat dis-tribution of the hidden Markov hain in an MMPP. We apply the Gibbs samplerto modelling the ourrene of a rare DNA motif (the Chi site) and to inferringregions of the genome with evidene of high or low intensities for ourrenes ofthis site.Keywords: Forward-Bakward Algorithm, Genome Segmentation, Gibbs Sam-pler
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1 IntrodutionA Markov Modulated Poisson Proess (MMPP) is a Poisson proess whose in-tensity depends on the urrent state of an independently evolving ontinuoustime Markov hain. Points from the MMPP are often referred to as the observeddata and the underlying Markov hain as the hidden data.MMPP's are used in modelling a variety of phenomena. For example, thearrivals of photons from single moleule uoresene experiments (Burzykowskiet al., 2003; Kou et al., 2005), where the arrival rate of photons at a reeptoris modulated by the state of a moleule whih (in the simplest model formula-tion) alternates between its ground state and an exited state. Other examplesinlude, wet deposition of a radionulide emitted from a point soure (Davisonand Ramesh, 1996); frequeny of bank transations (Sott, 1999); requests forweb pages from users of the World Wide Web (Sott and Smyth, 2003); mod-elling overow in teleommuniations networks; and modelling paketised voieand data streams (Fisher and Meier-Hellstern, 1992). Later in this paper weuse MMPPs to model the ourene of a rare DNA motif in baterial genomes.We fous on inferene of both the parameters and hidden state of MMPPs.The type of data available varies from appliation to appliation. In some appli-ations the exat timings of all observed events are known and in others data areaumulated over �xed intervals. In the latter situation the observed data oftenappear as either a ount of the number of events in eah interval or a binaryindiation for eah interval as to whether there were no events or at least oneevent.MMPP parameters an be �tted to data by mathing ertain theoretial mo-ments to those observed (see Fisher and Meier-Hellstern (1992) and referenestherein). However, it is possible to alulate the likelihood of arrival data foran MMPP (for example Asmussen (2000); see also Setion 4). Ryden (1996)2



summarises several likelihood approahes.Here we onsider Bayesian analysis and fous on exploring the posterior dis-tribution via Markov hain Monte Carlo. Metropolis-Hastings algorithms (e.g.Gilks et al., 1996) provide a standard mehanism for Bayesian inferene aboutparameters when the likelihood is omputable. This approah is employed forexample by Kou et al. (2005). Alternatively an approximate Gibbs sampler hasbeen developed in Sott (1999) and Sott and Smyth (2003). This Gibbs sam-pler is only appliable to event-time data, and restrits the possible transitionsof the underlying Markov hain. The approximation is based on requiring thatertain transitions of the underlying hain an only our at event-times. How-ever for the examples onsidered in Sott (1999) and Sott and Smyth (2003)this approximate Gibbs sampler is very eÆient.Here we present an exat Gibbs sampler whih, onditional on the data,samples alternately from the true onditional distribution of the hidden haingiven the parameters and then the onditional distribution of the parametersgiven the hidden hain. This Gibbs sampler an analyse data in any of thethree forms (exat timings, and interval ounts or binary indiators) outlinedearlier in this setion, and an allow for a general transition matrix for the stateof the hidden the Markov hain. It also avoids the simplifying approximationused by Sott (1999). An advantage of the Gibbs sampler over a Metropolis-Hastings sheme is that the Gibbs sampler does not need to be tuned. TheGibbs sampler also allows diretly for inferene about the hidden states throughapproximate samples from their posterior distribution. This feature is importantfor the appliation in genomis that we onsider.The main novelty in the Gibbs sampler is a diret simulation algorithm for theonditional distribution of the omplete ontinuous time path of the hidden state.This is an extension of the forward-bakward algorithm of Baum et al. (1970) to3



ontinuous time, and an extension of the ideas of Fearnhead and Meligkotsidou(2004). It an be applied to general ontinuous time Markov proesses andprovides an alternative to the rejetion sampling algorithms of Blakwell (2003)and Bladt and Sorensen (2005). We desribe the forward-bakward algorithmin Setion 2 and present its extension to ontinuous time Markov proess inSetion 3. We then fous on MMPPs, reviewing the derivation of the likelihoodin Setion 4, and present the Gibbs sampler in 5. We then the Gibbs sampler toanalyse data of the ourene of a DNA motif, known as the Chi sites, in E. oliin Setion 6 and the paper onludes with a disussion.2 The forward-bakward algorithmThe forward-bakward algorithm (Baum et al., 1970) applies to any disretelyobserved Hidden Markov Model (HMM) and allows sampling of the state of thehidden hain at the observation times given the states at the start and end of theobservation window. The algorithm is easily extended to the ase where there isa prior distribution on the initial state and no knowledge of the end state of thehain.We �rst desribe a general HMM. Let an unobserved (disrete or ontinuoustime) Markov hain evolve over a state spae of ardinality d. We observe aseond proess over a window [0; tobs℄ at spei� times t01; : : : ; t0n. Suppose thatthe value of the observed proess at time t0k is dk, and de�ne d := (d1; : : : ; dn)t.For notational onveniene de�ne t00 = 0, t0n+1 = tobs and t0 = (t00; : : : ; t0n+1).Also write sk for the state of the unobserved Markov hain at time t0k. Thelikelihood of the observed proess depends on the state of the hidden proess viaa likelihood vetor l(k) with k = 1; : : : ; n where l(k)i := P (dkjSk = i). From thisde�ne a likelihood matrix L(k) = diag(l(k)).4



Let T(k) be the kth transition matrix of the Markov hain (i.e. T (k)ij is theprobability that the unobserved proess is in state j just before t0k given that itis in state i at t0k�1.)We de�ne probability matriesA(n+1)s;sn+1 = P (sn+1jsn = s)A(k)s;sn+1 = P (dk; : : : ; dn; sn+1jsk�1 = s) (0 < k � n)And note thatP (dk; : : : ; dn; sn+1jsk�1) = dXsk=1P (skjsk�1)P (dkjsk)P (dk+1; : : : ; dn; sn+1jsk)Therefore the matries may be alulated via a bakwards reursionA(n+1) = T(n+1)A(k) = T(k)L(k)A(k+1) (0 < k � n)These matries aumulate information about the hain through the data. The�nal aumulation step reates A(0), where A(0)s0;sn+1 = P (d; sn+1js0) is propor-tional to the likelihood of the observed data given the start and end states.Using the Markov property we therefore haveP (Sk = sj d; sk�1; sn+1) = P (Sk = sj dk; : : : ; dn; sk�1; sn+1)= T (k)sk�1;s l(k)s A(k+1)s;sn+1A(k)sk�1;sn+1 (1)Using (1) we may proeed forwards through the observation times t01; : : : t0n,simulating the state at eah observation point in turn. This algorithm is oftenpresented in the equivalent formulation of a forwards aumulation of informationand a bakwards simulation step through the observation times.If the start and end states of the hain are unknown, but a prior distribution� on the state of the hidden proess is provided, then with a slight adjustment5



to the algorithm we may simulate the states at the start and end times of thehain as well as at the observation times.The start state is simulated fromP (S0 = sjd) = �s [A(1)1℄s�t A(1)1 (2)where 1 is the d-dimensional vetor of ones.The state sk (k > 0) is then simulated fromP (Sk = sjd; sk�1) = T (k)sk�1;s l(k)s [A(k+1)1℄s[A(k)1℄sk�1 (3)The observation times in a Markov Modulated Poisson Proess orrespondto atual events from the observed Poisson proess. Therefore not only do theobservations ontain information about the state of the hidden hain, but so dothe intervals between observations, sine these ontain no events. In Setion 4 wederive likelihoods through aumulation steps modi�ed to take this into aount.In a similar way we an use the forward-bakward algorithm to simulate the stateof the hidden hain at observation times for the �rst stage of our Gibbs sampler.The seond stage of the Gibbs sampler simulates a realisation from the exatdistribution of the full underlying Markov hain onditional on the data. Thisis more hallenging and relies on a tehnique for simulating a realisation from aontinuous time Markov hain over an interval given the start and end states.3 Simulating a ontinuous time Markov hainover an interval given the start and end statesLet ontinuous time Markov hain Wt have generator matrix G, and let it startthe interval [0; t℄ in state s0 and �nish in state st. We desribe a method forsimulating from the exat onditional distribution of the hain given the startand end states. 6



The behaviour ofWt on entering state i until leaving that state an be thoughtof in terms of a Poisson proess of rate �i := �gii and a set of transition proba-bilities pij = gij=�i (i 6= j)= 0 (i = j)The Poisson proess is started as soon as the hain enters state i; at the �rstevent from the proess the hain hanges to a state j determined at random usingthe transition probabilities for state i. A new Poisson proess is then initiatedwith intensity orresponding to the new state.An alternative formulation is based on the idea of uniformisation (e.g. Ross,1996). We apply a single dominating Poisson proess Ut to determine when tran-sitions may our; ruially the intensity � of the Poisson proess is independentof the hain state. We all the events in this dominating Poisson proess \U -events". Probabilities for the state transitions at these U -events are de�ned interms of a transition matrix M.The intensity of the dominating proess must neessarily be at least as large asthe largest (in modulus) diagonal element of G. With � = max �i the transitionmatrix for the disrete time sequene of states at U-events isM := 1�G+ I:For any state i with �i < �, M spei�es a non-zero probability of no hangein the state, so that the rate of events that hange state is �i. Considering aninterval of length t straightforward expansion of the transition matrix for theinterval gives eGt = e��Ite�Mt = 1Xr=0 e��t (�t)rr! Mr (4)The (i; j)th element of the left hand side is P (Wt = jjW0 = i). If we de�neNU(t) as the number of U -events over the interval of length t then the (i; j)th7



element on right hand side an be interpreted as1Xr=0 P (NU(t) = r) P (Wt = jjW0 = i; NU(t) = r)Thus onditional on start and end states s0 and st, the distribution of thenumber of dominating U -events is given byP (NU(t) = r) = e��t (�t)rr! [Mr℄s0;st[eGt℄s0;st (5)We have used a single dominating Poisson proess with �xed intensity inde-pendent of the hain state. Therefore onditional on the number of dominatingevents, the positions of these events and the state hanges that our at theevents are independent of eah other and may be simulated separately. Further-more, sine Ut is a simple Poisson proess the U events are distributed uniformlyover the interval [0; t℄.Suppose that r dominating U events are simulated at times t�1; : : : ; t�r, and letthese orrespond to (possible) hanges of state of Wt to s�1; : : : ; s�r. For onve-niene we de�ne t�0 := 0 and s�0 := s0.Now P (Wt = stjW0 = s0) = [Mr℄s0;stThe start and end state for eah interval are assumed known, and so weemploy the forward-bakward algorithm of Setion 2 with L(k) = I and T(k) =Mto simulate the state hange at eah U eventP (Wt�j = sjWt�j�1 = s�j�1;Wt = st) = [M℄s�j�1;s[Mr�j℄s;st[Mr�j+1℄s�j�1;st (j = 1; : : : ; r) (6)Our algorithm then beomes(i) Simulate the number of dominating events using (5).(ii) Simulate the position of eah dominating event from a uniform distributionover the interval [0,t℄. 8



(iii) Simulate the state hanges at the dominating events using (6).4 Likelihood for MMPP'sWe now fous exlusively on MMPP's. Let a (hidden) ontinuous-time Markovhain Xt on state spae f1; : : : ; dg have generator matrix Q and stationary dis-tribution �.An MMPP is a Poisson proess Yt whose intensity is �i when Xt = i, but inall other ways is evolving independently of Xt. We write � := (�1; : : : ; �d)t and� := diag(�).We are interested in Bayesian inferene about �;Q; and Xt. Here we re-view derivations of likelihood for the three di�erent data types mentioned inthe introdution. Likelihoods are required for inferene about � and Q usingMetropolis-Hastings shemes (see Setion 5). The aumulation steps and ex-tended state spaes used here are essential also for our Gibbs sampler whihallows inferene for �;Q; and Xt and is detailed in setion 5.2.The Y proess is (fully or partially) observed over an interval [0; tobs℄ withtobs known and �xed in advane. We employ the symbol 1 for the matrix or(horizontal or vertial) vetor all of whose elements are one, and similarly 0 is amatrix or vetor all of whose elements are zero.4.1 Derivation of the likelihood funtionWe are interested in inferene for three ommonly enountered data formatsD1 Exat times are reorded for eah of the n observed events (see Kou et al.(2005), and Sott and Smyth (2003) for example uses of this data format).D2 A �xed series of n+1 ontiguous aumulation intervals of length ti is used,9



and assoiated with the ith interval is a binary indiator bi whih is zero ifthere are no Y -events over the interval and one otherwise (see for exampleDavison and Ramesh, 1996).D3 A �xed series of n+1 ontiguous aumulation intervals of length ti is used,and assoiated with the ith interval is a ount i of the number of Y -eventsover the interval (see for example Burzykowski et al., 2003).In eah ase it is possible to derive the likelihood funtion. We summarise thethree derivations; for more details see Asmussen (2000), Davison and Ramesh(1996), and Burzykowski et al. (2003) respetively.4.1.1 Likelihood for event-time dataWe �rst onsider the data format D1. We write NY (t) for the number of Y -eventsin the interval [0; t℄, so that NY (0) = 0 and NY (tobs) = n, the total number ofevents. For notational onveniene we set t00 = 0, t0n+1 = tobs and let t01; : : : ; t0n bethe event times for the n events. De�ne tk = t0k � t0k�1; k = 1; : : : ; n + 1; theseare respetively the time from the start of the observation period to the �rstevent, the inter-event times, and the time from the last event until the end ofthe observation period. We de�ne t := (t1; : : : ; tn+1)t.We �rst derive a form forP (0)ij (t) := P (there are no Y events in (0; t) and Xt = j j X0 = i)We de�ne a meta-Markov proessWt on an extended state spae f1; : : : ; d; 1�g,and let Wt ombine Xt and Yt as follows: Wt mathes Xt exatly up until justbefore the �rst Y event. At the �rst suh event W moves to the absorbing state1�. So if the �rst Y -event ours at time t0for t < t0; Wt = Xtfor t � t0; Wt = 1�10



The generator matrix for Wt isGw = 24 Q�� �0 0 35 (7)So the transition matrix at time t iseGwt = 24 e(Q��)t (Q��)�1(e(Q��)t � I)�0 1 35 (8)From the de�nition of W we see thatP (0)ij (t) = [e(Q��)t℄ij (9)So the likelihood of the observed data, and that the hain ends in state j giventhat it starts in state i is the (i; j)th element ofe(Q��)t1�e(Q��)t2� : : :�e(Q��)tn+1This is theA(0) matrix of the forward-bakward algorithm as desribed in Setion2. Assuming that the hain starts in its stationary distribution, the likelihood ofthe observed data is thereforeL(Q;�; t) = �te(Q��)t1� : : : e(Q��)tn�e(Q��)tn+11 (10)4.1.2 Likelihood for aumulation interval formatsWe now onsider data formats D2 and D3 and for simpliity assume all theinterval lengths to be equal (ti = t� ; i = 1; : : : ; n + 1). Extension to the moregeneral ase is straightforward.De�neP (s)ij = P (there are s Y -events over (0; t�) and Xt� = jjX0 = i)℄11



and P ij = P (there is at least one Y -event over (0; t�) and Xt� = jjX0 = i)℄With bi as the binary indiator for at least one event in the ith interval, thelikelihood for D2 is therefore�t n+1Yi=1 P(0)1�bi P bi! 1and with ount i of the number of events for eah interval the likelihood for D3is �t n+1Yi=1 P(i)! 1P(0) is given by (9) and so it remains to alulate the matries P() ( > 0), andP. Sine the probability of �nishing interval (0; t�) in state j given starting statei is the (i; j)th element of eQt�, we see thatP = eQt� � e(Q��)t�For format D3 de�ne max = max i and reate a new meta-proess Vt on statespae S = (1(0); : : : ; d(0); 1(1); : : : d(1); : : : ; 1(max); : : : ; d(max); 1�). If the number ofY -events observed up until time t in the aumulation interval ontaining t isN�Y (t), then for N�Y (t) � max Vt = X(N�Y (t))t and otherwise Vt = 1�. For exampleif at time t, the hidden proess is in state 3 and there have been 7 events so farin the aumulation interval ontaining t, then the meta-proess Vt is in state3(7)The generator matrix for Vt is
12



Gv =
26666666666664
Q�� � 0 : : : 0 00 Q�� � : : : 0 00 0 Q�� : : : 0 0: : : : : : : : : : : : : : : : : :0 0 0 : : : Q�� �0 0 0 : : : 0 0

37777777777775 (11)
and the blok of square matries omprising of the top d rows of eGvt� give the(d� d) onditional transition matries P(r).5 Bayesian approahWe are interested in Bayesian analysis of MMPP's. We �rst briey disussthe hoie of priors, before desribing our new Gibbs sampling algorithm. Forbakground on existing MCMC shemes for MMPPs see the introdution andreferenes therein.5.1 Choie of priorFor omputational simpliity we use onjugate priors for the parameters. If welet �i = �qi;i, be the rate that the hidden Markov hain leaves state i, andpi;j = qi;j=�i be the probability of a transition to state j(6= i) when we leavestate i, then we assume independent gamma priors for the �is and the �is andDirihlet priors for eah vetor of probabilities (pi;1; : : : ; pi;i�1; pi;i+1; : : : ; pi;d).Care must be taken with the parameters of these prior distributions. Inpartiular, improper priors for the parameters an lead to improper posteriors(e.g. Sherlok, 2005). Also we would hope that eah qij < �i so that most visitsto a given state will ontain observed events, making it easier to identify the13



separate states, as well as to infer �i5.2 Gibbs samplerWe �rst introdue some notation. We write the state of the hain at event-times(or for D2 and D3 the end of eah time-interval) and at the start and end of theobservation period as Si = Xt0i . The distribution of the new parameter vetordepends on the underlying hain through the starting state (via �s0) and threefurther suÆient statistis, whih we now de�ne.We write ~ti for the total time spent in state i by the hidden hain, rij forthe number of times the hain transitions from state i to state j (rii = 0 8i),and ni for the number of Y -events that our while the hain is in state i. Weorrespondingly de�ne ~t = (~t1; : : : ; ~td)t, n = (n1; : : : ; nd)t, and R as the matrixwith elements rij . Our Gibbs sampler ats on augmented state-spae f�;Q; Xtg,and eah iteration has 3 distint stages:1. Given the parameter values (�;Q) use the seond form of the the forward-bakward algorithm (Equations 2 and 3 of Setion 2) to simulate the stateof the hidden hain Xt at the start and end of the observation interval(t00 = 0 and tobs = t0n+1) and at a set of time points t01; : : : ; t0n. For dataformat D1 t01; : : : ; t0n orrespond to event times; for formats D2 and D3t01; : : : ; t0n+1 are the end-points of aumulation intervals.2. Given the parameter values and the �nite set of states produed in stage1, apply the tehnique of Setion 3 to eah interval in turn to simulate thefull underlying hidden hain Xt from it's exat onditional distribution.3. Simulate a new set of parameter values.We now desribe how eah of the stages may be implemented for eah of thethree data formats. 14



Data format D1For stage 1 we apply the forward-bakward algorithm of setion 2 modi�edto take aount of the fat that observation times t01; : : : ; t0n orrespond exatlyto events of the observed proess and that therefore there are no Y -events be-tween observation times. For the kth interval, whih has width tk = t0k � t0k�1,the transition matrix is T(k) = e(Q��)tk , and the likelihood vetor for the kthobservation point is l(k) = �.This proess is exatly equivalent to straightforward appliation of the se-ond form of the forward-bakward algorithm to the meta-proess Wt of setion4.1.1 on the extended state spae f1; : : : ; d; 1�g, but replaing the d-dimensionalvetor 1 with the d+1-dimensional vetor (1; : : : ; 1; 0)t. For the kth interval, thetransition matrix is now T(k) = eGwtk , where Gw is de�ned in (7) and eGwt isgiven expliitly in (8). The likelihood vetor is l(k) = (�; 0)t.Stage 2 applies the tehnique of Setion 3 diretly to extended state spaef1; : : : ; d; 1�g with generator matrix Gw.Figure 1 shows the �rst two stages for data format D1.Stage 3 is espeially simple using our onjugate priors. The likelihood for thefull data (observed data and path of hidden hain) is:L(xt; tjQ;�) / �s0 � dYi=1Yj 6=i �qrijij e�qij~ti�� dYi=1 �nisi e��i~ti (12)Thus onditional on observing the path of the underlying hidden Markovhain, the densities of the �is are gamma. The joint onditional densities forthe �is and the pijs is proportional to the produt of independent gamma andDirihlet distributions and the stationary probability of the hidden hain startingin state s0. This latter distribution an be simulated from using rejetion sam-pling; proposing values from the respetive gamma and Dirihlet distributionsand aepting then with the resulting stationary probability of s0.15
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(b)()Figure 1: the Gibbs sampler (a) �rst simulates the hain state at observation timesand the start and end time; for eah interval it then simulates (b) the number ofdominating events and their positions, and �nally () the state hanges that may ormay not our at these dominating events. The �gure applies to a two-state hainwith �2 + q21 > �1 + q12 .
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Data format D2For stage 1 we apply the seond form of the forward-bakward algorithmwith likelihood vetor l(k) = 1 and transition matrix dependent on the binaryindiator (bk) for the interval T(k) = P(0)1�bk P bkFor stage 2 we �rst onsider the meta-proessW t on state spae f1; : : : ; d; 1�; : : : ; d�gwith W t = Xt when Yt = 0 and W t = X�t otherwise.This has generator matrixGw = 24 Q�� �0� Q 35For a given interval suppose that we have simulated Xt starting in state s0and ending state s1. On the extended state spae this orresponds to starting instate s0 and �nishing in state s1 if there have been no events over the interval,otherwise �nishing in s�1 . We simulate the underlying hain from the algorithmof setion 3. This also supplies the time of the �rst event in the interval, and thestate at the time of this event, whih we use for simulating the new parametersin stage 3.In stage 3, for aumulation interval i de�ne t�ij as the amount of time thatthe hidden hain spends in state j between the start of the interval and eitherthe time of the �rst event (if there is a �rst event) or the end of the interval.Further let t�j =Pn+1i=1 t�ij be the known time that the hidden hain is in state j,and n�j the number of intervals for whih the �rst event ours while the hiddenMarkov hain is in state j. Then the full-data likelihood isL(xt; tjQ;�) / �s0 � dYi=1Yj 6=i �qrijij e�qij~ti�� gYj=1 �n�jj e��jt�j (13)We then proeed as with data format D1.17



Data format D3For this data format we onsider the meta-proess Vt on extended state spaef1(0); : : : ; d(0); 1(1); : : : d(1); : : : ; 1(max); : : : ; d(max); 1�g as de�ned in setion 4.1.2.For the appliation of the forward-bakward algorithm in stage 1, the transi-tion matries are T(k) = P(k) and the likelihood vetors are l(k) = 1. For stage 2,in simulating from the exat distribution of the underlying hain for an intervalwhere the start state is s0, the end state is s1 and there are k events observedwe use the generator matrix Gv as de�ned in (11) with start state s0 but endstate s(k)1 .The algorithm also simulates from the exat distribution of the times at whiheah of the k events ours over the interval, therefore we may perform stage 3exatly as for data format D1.6 Analysis of Chi site data for E.oli6.1 Bakground and the E.oli dataIn reent years there has been an explosion in the amount of data desribingboth the genomes of di�erent organisms, and the biologial proesses that e�etthe evolution of these genomes. There is muh urrent interest in understandingthe funtion of di�erent features of the genome and what a�ets the biologialproesses suh as mutation and reombination. One approah to learning aboutthese is via genome segmentation (e.g. Li et al., 2002): partitioning a genome intoregions that are homogeneous in terms of some harateristi (e.g GC ontent),and then looking for orrelations between this harateristi and either anotherharateristi, or a biologial proess of interest.Here we onsider segmentation of a baterial genome based on the rate ofourene of a partiular DNA motif - alled the Chi site. The Chi site is18
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Figure 2: shemati of the leading and lagging strands on the inner and outer rings ofthe E.oli genome split by the repliation origin (O) and terminus (T), together withthe diretion relevant for Chi site identi�ation.a motif of 8 basepairs: GCTGGTGG. The Chi site is of interest beause itstimulates DNA repair by homologous reombination (Gruss and Mihel, 2001),so the ourene of Chi sites has been onjetured to be related to reombinationhotspots.Our data is for E.oli DNA and onsists of the position (in bases) of Chi sitesalong the genome. Figure 2 shows a shemati of the irular double strandedDNA genome of E.oli, with the two strands represented by the inner and outerrings. There is a 1-1 mapping of bases between the outer and inner strands (C$ G and A $ T) so that eah uniquely determines the other. The �gure alsoindiates a diretionality assoiated with di�erent halves of eah strand as splitby the repliation origin (O) and terminus (T). The moleular mehanisms ofDNA repliation di�er between the two half-strands and they are termed leadingand lagging, as indiated in the �gure.The 1-1 mapping between base pairs together with the reversing of dire-19



tionality between inner and outer strands implies that searhing the Chi site inthe outer strand is equivalent to searhing for CCACCAGC in the inner strand.This sequene is di�erent enough from the sequene of the Chi site in the innerstrand, that ourrenes of the Chi site in inner and outer strands are e�etivelyindependent. Ourene of Chi sites in leading and lagging halves are also inde-pendent sine these are separate parts of the genome. Thus our data onsists offour independent sets of positions of Chi sites - along leading and lagging halvesof both inner and outer strands. Figure 3 shows the umulative number of eventsalong the genome for eah of these data sets.The repliation and repair mehanisms for leading strands are di�erent tothose for lagging strands so in general we might expet them to have di�erentompositional properties (densities of nuleotides and oligonuleotides). A biasin the frequeny of Chi sites favouring leading strands has been noted in severalgenomes, inluding E.oli (e.g. Karoui et al., 1999) and is evident from the �gure.A more open question is whether there is variation within the leading and/orlagging strands, rather than just between the leading and lagging strands.Our aim is to �rst determine whether Chi sites appear to our uniformlyat random within eah of the leading and lagging strands, or whether there isevidene of the intensity of the ourene of Chi sites varying aross either strand.Seondly, if there is variation then we would like to infer the regions with strongevidene for either a high or low intensity of Chi sites.The E.oli genome (de�ned as single strand length) is 4 639 675 bases longso eah of the individual halves are 2319.838 kilobases (kb) long. Heneforth weuse units of kb.
20



0 500 1000 1500 2000

0
10

0
20

0
30

0

kB

Cu
mu

lat
ive

 #
 p

oin
ts

Figure 3: umulative number of ourenes of the Chi site along the genome forleading (+) and lagging (4) halves of the outer strand and leading (�) and lagging(r) halves of the inner strand.
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6.2 Model and priorWe analyse the positions of ourenes of the Chi site along �rst leading thenlagging strands using our Gibbs sampler. These positions are disrete basesand our Gibbs sampler applies to ontinuous data, however eah of the fourstrands is over 2319kb long and ontains less than 400 ourenes of the 8-base Chi site, so it is reasonable to model this disrete proess as ontinuous.Furthermore, a straightforward approah to disrete modelling would involveapplying the forward-bakward algorithm aross the entire genome, whih wouldbe omputationally prohibitive.One of our aims is to perform model hoie, and the hoie of model willdepend on the priors for eah model; in partiular we annot use uninformativepriors (e.g. Bernardo and Smith, 1995, Chapter 6). For the results we presenthere we take exponential priors (that is gamma densities with shape parametersequal to 1) for the �is and the �is (gamma densities with shape parameter of lessthan 1 will lead to posteriors with an in�nite density at 0); and uniform priorsfor the vetors of transition probabilities.We �rst analyse the inner leading and lagging strands and use the resultsfrom these to inform priors for analyses of the outer leading and lagging strands,whih we use to perform model hoie. We also tested robustness of our resultsto variation in the priors.We analyse the inner strands using exponential priors, the means of whih arehosen empirially from the data for eah strand. The mean for all � parametersis set to n=tobs, where n and tobs are respetively the number of Chi sites andthe total length in kb of the strand. The mean for all q parameters needs to besomewhere between 1=tobs and n=tobs for an analysis to be feasible so we set it topn=tobs. These latter hoies are rather arbitrary, but the resulting posteriorsare only used to inform the (weak) priors for the analyses of the outer strands.22



Sine the priors for the inner strand are exhangeable and the likelihood of anMMPP is invariant under permutation of the states, so too is the joint posterior.We therefore order the results from the analysis of the inner strand suh that�1 � �2 and use the posterior means as means for the exponential priors for theanalysis of the outer strands. Sine the runs for the outer strands have non-exhangeable priors, we may not order the output and must treat it exatly asit appears.For eah strand we analyse the 1-d ase analytially and the 2-d and 3-d asesusing 100000 iterations of our Gibbs sampler. Gibbs sampler ode was writtenin C and, when run on an AMD Athlon 1458MHz CPU, took approximately 11minutes to perform 100000 iterations on the outer lagging strand. This strandontains 117 Chi-sites.Matrix exponentials were alulated by trunating (4). The trunation wasset so that the error in eah element of the matrix exponential was less than apre-determined tolerane (this was eÆient as errors deay faster than geomet-rially, and aurate as it involves summing only positive values). The sum anbe evaluated eÆiently for all intervals lengths by alulating and storing therequired powers of M one for eah iteration. The powers of M are also thenused when simulating the underlying hidden hain.6.3 ResultsFigure 4 shows trae plots for the �rst 20 000 iterations and ACF's over the�rst 10 000 iterations for the 2-d run on the lagging strand of the outer ring.The trae plot for �1 shows one of only 6 mode-swith-and-return's (all brief),indiating that the di�erent priors �x quite �rmly the ordering of the states.These brief swithes do however exert a strong (and spurious for our purposes)inuene on the ACF's, and so we show ACF's for a period in whih there is no23
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Figure 4: trae plots for the �rst 20 000 iterations and and ACF's for the �rst10 000 iterations of the Gibbs sampler for the lagging strand of the outer ring withnon-exhangeable priors derived from the run for the lagging strand of the inner ring.
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Dataset 1-D 2-D 3-Dlagging (outer) <0.01 0.83 0.17leading (outer) 0.30 0.44 0.26Table 1: Posterior model probabilities for leading and lagging halves of the outerstrand.mode-swithing; the mixing appears to be satisfatory.Posterior model probabilities for the leading and lagging strands were alu-lated using the method of Chib (1995) and are given Table 1. They indiate alear hoie of a two-dimensional model over a one-dimensional model for thelagging strand. There is also substantial evidene for a two-dimensional modelin preferene to a three-dimensional model. From the model probabilities alonethere is nothing to hoose between one, two, and three dimensional models forleading strands.For the two-dimensional model for lagging strands the posterior mean pa-rameter values orrespond to intensities of 20.8 and 92.1 Chi sites per megabase(Mb), and an intensity of 16.0 transfers per Mb from the lower state to the higherstate and 21.1 transfers per Mb from the higher state to the lower state. Theone-dimensional model for leading strands has posterior mean intensity of 164.7Chi sites per Mb.Posterior model probabilities may be sensitive to the exat prior used, andsine the data ontains less information about the q parameters than the � pa-rameters, the q priors may be partiularly inuential. We performed furtheranalyses of the outer and inner rings with exhangeable exponential priors for� and with exhangeable exponential, (approximately) normal, and trunatedexponential priors for q. There was little hange in the posterior means for or-dered (�1; �2), but a great deal of variability in (q12; q21) as expeted. However25



the posterior model probabilities always indiated at least a two-state model forlagging strands and little to hoose between one and two state models for leadingstrands.A possible biologial explanation for our results is given by how repliationdi�ers on leading and lagging strands. Leading DNA strands are repliatedontinuously whereas lagging strands are repliated in fragments. It may bethe fragmentary nature of repliation that is ausing the hetrogeneity in rate ofourrene of Chi sites.We an use the output of the Gibbs sampler to perform segmentation ofthe lagging strands based on the intensity of the ourene of Chi sites. Fig-ure 5 plots the mean (over 1000 hains sampled every 100 iterations) intensityagainst position along the genome. This gives a 'smoothed signal' of Chi siteintensity whih ould be used to evaluate orrelations with (say) reombinationrates aross the genome. An alternative segmentation might be based on theposterior probabilities that a given point along the genome is in eah of the pos-sible states - for this segementation, at eah point the hain is simply set to thestate with the highest posterior probability.7 DisussionWe have presented a novel approah to simulating diretly from the onditionaldistribution of a ontinuous time Markov proess and shown how this an be usedto implement a Gibbs sampler for analysing MMPPs. The Gibbs sampler ananalyse data where the event-times are diretly observed, and also data wherethe number of events or even only the presene/absene of events is known for asequene of time intervals.The Gibbs sampler has a number of advantages over standard Metropolis-26
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Figure 5: mean � value from 1000 hains at eah point in the lagging strand
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Hastings samplers. Firstly, the Gibbs sampler requires no tuning; tuning forMetropolis-Hastings algorithms an be time onsuming - espeially for longdatasets where the algorithm takes longer to run and for algorithms involvingbloking of parameters. Further suh tuning is valid for the area of the poste-rior being explored whilst the tuning takes plae (hopefully the mode); there isno guarantee that it will be appropriate for as yet unseen tail areas that thealgorithm should eventually explore.Seondly, a by-produt of the Gibbs sampler is that we an investigate theposterior distribution of the underlying hain. This allowed us to identify regionsof high intensity of Chi site ourenes on the lagging strand of E.oli DNA.There has been previous work on developing a Gibbs sampler for MMPP's.Sott (1999) and Sott and Smyth (2003) present an approximate Gibbs samplerthat an be applied to ertain MMPP's, assuming the event times are diretlyobserved. Their approximation is to assume that ertain state hanges oinidepreisely with observed events. In many situations this approximation will benegligible; Sott (1999) models times at whih a bank aount is aessed, wherea riminal may or may not have obtained the bank details; it is argued that itis sensible to de�ne the arrival of a riminal as the time at whih he/she �rstaesses the aount. Further Sott and Smyth (2003) argue that foring statehanges to start and end at event-times `eliminates the possibility of patho-logial bursts ontaining no events'. However their Gibbs sampler also plaesrestritions on the allowable state hanges: all transitions to states with lowerintensities than the urrent state are permitted, but out of all the (ordered) stateswith higher intensity than the urrent state, transitions are only permitted tothe state immediately adjaent to the urrent one. Also the approximation ofrestriting state hanges to event times will beome less aurate as the rates ofthe generator for the hidden hain inrease towards the same order of magnitude28



as the intensities of the observed proess. Our Gibbs sampler avoids these issuesand there is little extra ost in implementing it.Blakwell (2003) and Bladt and Sorensen (2005) use rejetion sampling tosample from the exat distribution of a disretely observed ontinuous-timeMarkov proess. A hain is simulated forward from a given observed state, andif the simulated state at the next observation time does not math the orre-sponding observed state then the hain is rejeted and the proess repeated untila math is ahieved. A similar tehnique ould replae stage 2 of our Gibbs sam-pler, where we simulate from the hidden hain and the observed event proessand aept the hidden hain if the hain �nishes in the orret state and thereare no observed events. This is eÆent only when the number of rejeted hainsis small. It is straightforward to alulate the expeted number of simulationsuntil aeptane for an interval of known length given the start and end states.We alulated this for the simulated states at event times at every iteration ofour Gibbs sampler for every one of the 1164 intervals in a data set simulatedover an observation window of 100 seonds with intensities �1 = 10; �2 = 13 andrates for the hidden Markov hain q12 = q21 = 1. On average for about 700 ofthe intervals 3 or fewer hain simulations were expeted to be required. Howeverthe distribution of the expeted number of simulations had a very heavy righthand tail, with about 200 intervals requiring at least 10 simulations and about20 requiring more than 100 simulations, so that the mean expeted number ofsimulations per interval was around 20. This number is likely to inrease as thenumber of hidden states inreases. In pratie stage 2 of our Gibbs sampler takesa very small proportion of the CPU time and this would be likely to remain smallif rejetion sampling were to be used instead, unless the number of rejetions waslarge.We onsidered the appliation of MMPPs to modelling the ourene of a29



spei� DNA motif in E.oli. We found evidene for heterogeneity in the our-rene of this DNA motif, the Chi site, in the lagging strand; whih may havea biologial explanation in terms of the repliation proess on this strand. Theoutput of our Gibbs sampler also enables us to segment the lagging strand intoregions of high and low intensity of these Chi sites. Ideally we would like to usethis segmentation to test for orrelation of high Chi site intensity with regionsof high reombination rates, but unfortunately data is not urrently available onthe variation in reombination rate in E.oli.A omputer program, written in C, whih implements the Gibbs sampler forevent-time data is available from:http://www.maths.lans.a.uk/�sherlo/MMPP/index.htmlAknowledgements: We dediate this paper to the memory of Nik Smithwho helped with the appliation of our method to the analysis of E.Coli DNA.The �rst author aknowledges support from EPSRC grants GR/R91724/01 andGR/T19698/01.ReferenesAsmussen, S. (2000). Matrix-analyti models and their analysis. SandinavianJournal of Statistis 27, 193{226.Baum, L. E., Petrie, T., Soules, G. and Weiss, N. (1970). A maximisation teh-nique ouring in the statistial analysis of probababilsti funtions of Markovhains. The Annals of Mathematial Statistis 41, 164{171.Bernardo, J. M. and Smith, A. F. M. (1995). Bayesian Theory . Wiley, Chihester,UK. 30
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