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Abstract An improved method is sought to accurately quantify the number of mo-
tor units that operate a working muscle. Measurements of a muscle’s contractive
potential are obtained by administering a sequence of electrical stimuli, but non-
deterministic firing patterns of the motor units impede estimation. We consider a
state-space model that assumes afixednumber of motor units to describe the hid-
den processes within the body. Particle learning is appliedto estimate the marginal
likelihood for a range of models that assumes a different number of motor units.
Simulation studies of systems containing up to 8 motor unitsare very promising.

1 Introduction

We are interested in accurately quantifying the number of Motor Units (MUs) that
supply a working muscle. A MU consists of a single motor neuron and the muscle
fibres it governs. An electrical study of a muscle provides insight into the neuromus-
cular processes by measuring the Compound Muscle Action Potential (CMAP) for
a range of stimuli. The ability to partition each CMAP into the contributions from
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each MU, a Single Motor Unit Potential (SMUP), is central to Motor Unit Number
Estimation (MUNE). However, this is complicated by the occurrence of ‘alterna-
tion’ [1], where different MU combinations activate under identical conditions.

2 The Neuromuscular Model

We propose an adaptation to the state-space neuromuscular model [3] that describes
the relationship between the applied stimulus,st for t = 1, . . . ,T, and the correspond-
ing CMAP,yt , through the hidden biological processes. The state variable is defined
to be the firing index vector,kt = (k1,t , . . . ,k j,t , . . . ,ku,t)

′, where each element de-
scribes a single MU’s reaction to the stimulus and the vectorlength,u, denotes the
assumedknownquantity of MUs within the system. The individual firing events
are assumed to be independent Bernoulli random variables with probability that de-
pends on the administered stimulus via a non-decreasing link function,F(·; ·), with
parameters specific to the MU,φφφ j :

k j,t |st ,φφφ j ∼ Bernoulli
(

F
(

st ;φφφ j

) )

. (1)

Each firing MU generates a SMUP that is assumed to be Gaussian with a unique
mean,µ j , but a common variance,σ2. Denoting the mean vector of SMUPs as
µµµ = (µ1, . . . ,µ j , . . . ,µu)

′, the recorded CMAP is the sum of the generated SMUPs
plus a Gaussian baseline measure that has its own mean,µb, and variance,σ2

b . By
using calibration data to approximateσ2

b , we assume thatσ2
b ≪ σ2 and introduce

an indicator function,I{·}, in defining the observation process:

yt |kt ,µb,σ2
b ,µµµ,σ

2 ∼ N
(

µb+k′
t µµµ, σ2

b I{kt=0}+σ21′kt
)

. (2)

3 Methodology

MUNE using the neuromuscular model is assessed by Bayesian model selection;
requiring reliable marginal likelihood estimates for a range of proposed model of
varying dimension. Consider the marginal predictive factorisation, where each term
expresses the probability for a CMAP given the currently available data:

Pr(y1:T |s1:T ,u) = Pr(y1|s1,u)
T

∏
t=2

Pr(yt |y1:t−1,s1:t ,u) . (3)

Estimates of these terms are obtainable from independent applications of the
particle learning methodology [2] to each considered model. This procedure is an
extension of the auxiliary particle filter that constructs the particle set with the Es-
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sential State Vector (ESV), containing the sufficient information necessary for the
two stage sequential procedure:

1. Resample the particles with weights proportional to the marginal predictive ofyt

with all unknown parameters and state variables marginalised.
2. Propagate the particles either deterministically or by generating appropriate ran-

dom samples.

The marginal predictive terms are thereby estimated by Monte Carlo integration
over the ESV within the procedure before the propagation stages.

4 Discussion

Our procedure has been applied to simulated data from 160 hypothetical neuromus-
cular systems that contain up to 8 MUs. The results presentedin 1 illustrate that our
procedure is very promising for small neuromuscular systems as the true number of
motor units are correctly identified by the model posterior mode correctly. Although
the correct solution was identified in the majority of cases for larger systems, the
modal estimate was within one MU of the truth. The increase inthe average interval
width for larger systems illustrates that such systems are harder to analyse because
there is a greater chance of incurring a period of alternation that involves multiple
motor units; require more information to decipher the underling structure.

Table 1 Simulation study summaries from 160 hypothetical neuromuscular systems.

Number of Motor Units (u)

Summary 1 2 3 4 5 6 7 8

û= ua 100% 100% 100% 100% 100% 100% 95% 85%
95% Coverageb 100% 100% 100% 100% 100% 100% 95% 90%
Mean Interval Widthc 0.00 0.00 0.00 0.10 0.15 0.15 0.20 0.25

a Proportion of cases whereby the posterior mode estimate is the true value.
b Proportion of cases whereby the ‘at least’ 95% higher posteriordensity interval contain the true
value.
c Mean width of the ‘at least’ 95% higher posterior density interval.

Our aim is to adapt this procedure to analyse larger neuromuscular systems.
However, the event space forkt increases exponentially as larger models are consid-
ered. Consequently, this substantially increases the computational complexity due
to of the need to marginalise all unknowns, parameters and states, within the algo-
rithmic procedure.
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