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Introduction

Analyses of the RWM for theoretically accessible classes of high-
dimensional targets has shown that in many cases the optimal scaling is
achieved when the acceptance rate is ≈ 0.234, but that there are excep-
tions. We present a general set of sufficient conditions which ensure that
the limiting optimal acceptance rate is 0.234.

The RWM algorithm creates a Markov chain with stationary distribution
π(x), and hence (eventually) a dependent sample with distribution ≈ π(x).
Given the current value X ∈ Rd, a new value X∗ = X + Y is proposed by
sampling a “jump”, Y, from from a pre-specified Lebesgue density

q (y|x) = λ−d r (y/λ) ,

where r (−y) = r (y); the proposal is then accepted with probability α(x,y) =
1 ∧ (π(x∗)/π(x)). If the proposed value is accepted it becomes the next
current value (X′← X∗), otherwise the current value is left unchanged (X′←
X).

Previous theoretical results

Consider exploration of targets of the form:

πd(x) =
d∏

i=1

βifi(βixi),

using a Gaussian proposal. In Roberts and Rosenthal (2001) the βi are
taken to be random, iid, and the 0.234 acceptance rate rule is shown to
hold provided E

[
β2

i

]
< ∞. In Bèdard (2007) the βi are a fixed triangular

sequence, and the 0.234 acceptance rule is shown to hold provided that
βmax∑d

i=1 βi
→ 0, where βmax = max

i=1...d
βi. (1)

Sherlock and Roberts (2009) considers elliptical targets X; i.e. of the form

πd(x) := f
(
xtBdx

)
for a symmetric d × d matrix Bd with eigenvalues β1, . . . , βd, explored using
any spherically symmetric proposal λU. The 0.234 rule is shown to hold
provided that there are sequences k (d)

x and k (d)
u such that

||X|| /k (d)
x

p−→ 1 and ||U|| /k (d)
u

m.s.−→ 1.

and that (1) holds. If (1) holds and ||U|| /k (d)
u

m.s.−→ 1 but ||X|| /k (d)
x

p−→ R for
some non-degenerate random variable R then the optimal acceptance rate
is strictly less than 0.234.

Set-up and notation for this article

For a given posterior π(x), denote the first two derivatives of the log posterior
as

Mi(x) :=
∂ log π
∂xi

∣∣∣∣
x
, and Hij(x) := − ∂

2 log π
∂xi∂xj

∣∣∣∣∣
x

,

and define the following frame invariant norms of the derivatives:

M̃(x) := ||∇ log π|| = ||M(x)|| ,
H̃(x) := −∇2 log π = trace(H(x)).

The eigenvalues of H(x) will be denoted β1(x), . . . , βd(x), and their maximum
modulus as βmax(x) := maxi=1...d |βi(x)|; note that

∑d
i=1 βi(x) = H̃(x).

Proposals Y := λU are assumed to be spherically symmetric and to satisfy
||U|| /k (d)

u
m.s.−→ 1, for some sequence k (d)

u .

Measure of efficiency

Our efficiency criterion is the generalised expected squared jump distance,

E
[
α(X,Y) YtTY

]
.

where T is a positive definite d × d matrix and where expectation is with
respect to π(x) and the proposal distribution for Y.

In order that no one component of the process dominates any of the others
in its effect on the ESJD, we require that curves of constant ytTy are not
too eccentric. Specifically let τi (i = 1 . . . d) be the (triangular) sequence of
eigenvalues associated with the (sequence of) matrices T, and let
τmax := maxi=1...d τi. We require that

τmax

T̃
→ 0, where T̃ :=

d∑
i=1

τi.

We now provide conditions such that the limiting optimal acceptance rate
becomes deterministic. Intuitively, this is likely to happen if the acceptance
probability itself becomes, in some sense, deterministic.

Shell conditions

From position X, split a specific proposed jump, y, into a component, y1,
which is parallel to ∇ log π and a component, y2, which is perpendicular to
∇ log π. Now

log[π(X + y)/π(X)] = log[π(X + y1)/π(X)] + log[π(X + y1 + y2)/π(X + y1)].

To first order, the first term depends on M̃(x) = ||∇ log π||, whereas the sec-
ond depends on “how many contours” a tangential move is likely to cross,
which in turn depends on both the curvature (represented by H̃(X + y1)) and
the gradient (represented by M̃(X + y1)). If both M̃(X) and H̃(X) become, in
some sense, deterministic, then so might the change in logπ; these require-
ments are embodied in the following shell conditions: ∃ sequences M̃ and
H̃ such that

M̃(X)

M̃
p−→ 1 and

H̃(X)

H̃
p−→ 1. (2)

Relative variability conditions

Use of the curvature and gradient at the current position to model movement
to a new position is unlikely be valid if these quantities change significantly
on the scale of a proposed jump (e.g. if H̃(x) and H̃(x+y) are very different).
The requirement that the quantities at x be representative of values over the
likely jump region is embodied in the relative variability conditions. Define

∆ (X,U) := H (X + U)− H (X) ,

and for Z ∼ N(0, Id) which is independent of X, and any fixed µ > 0 and
δ > 0, require that

either PX,Z

(
1
H̃

∣∣∣Zt∆
(

X, tµM̃/H̃ Z
)

Z
∣∣∣ < δ ∀ t ∈ [0,1]

)
→ 1, (3)

or PX,Z

log d
H̃

d∑
i=1

d∑
j=1

∣∣∣∆ij

(
X, tµM̃/H̃ Z

)∣∣∣ < δ ∀ t ∈ [0,1]

 → 1. (4)

Eccentricity Condition

H̃(X) represents an “average” curvature which, intuitively, should be
applicable provided there is no particular direction where the effect on the
target of a unit move in that direction is much larger than the effect of
movement in any other direction; in other words the scales of variability of
π along each component of X should not be too dissimilar. The
eccentricity condition on the target ensures that the chance of such
extreme behaviour diminishes to zero.

βmax(X)∑d
i=1 βi(X)

p−→ 0. (5)

Note that (5) is a generalisation of (1).

Main result

Theorem Subject to the shell conditions (2), either of the relative variability
conditions (3) or (4), and the eccentricity condition (5), for fixed µ > 0 set
the scaling as

λd = µ
d1/2 M̃

k (d)
u H̃

.

The expected acceptance rate and generalised ESJD now satisfy

lim
d→∞

E [α (X,Y)] = 2Φ

(
−1

2
µ

)
, (6)

lim
d→∞

H̃2

M̃2T̃
E
[
YtTY α (X,Y)

]
= 2µ2Φ

(
−1

2
µ

)
. (7)

NB strengthening (2) and adding a regularity condition gives H̃ ∼ M̃2.

Corollary Equation (7) is maximised at µ ≈ 2.38; substitution into (6) pro-
vides the limiting optimal acceptance rate of ≈ 0.234.

Example

For fixed p > 0, the stationary pth order Markov chain

π(x) := f ∗(x1, . . . , xp)f (xp+1|x1, . . . , xp) . . . f (xd|xd−p, . . . , xd−1),

(with stationary distribution f ∗) satisfies all of the requirements subject to
certain moment conditions.
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