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Motivation

Imagine a stochastic process V which arises from some distribution with density p(v|θ1).

Imagine noisy observations y of this stochastic process with conditional density p(y|θ2, v).

Set θ = (θ1, θ2) and suppose that p(y|θ) =
∫
p(v|θ1)p(y|v, θ2) dv is intractable. From now on

we do not distinguish θ1 and θ2 and simply condition on θ: p(y|θ) =
∫
p(v|θ)p(y|v, θ) dv.

Let the parameters have a prior, π0(θ). We wish to obtain a sample from the posterior π(θ).

Ideally, we would run a Metropolis-Hastings algorithm targeting π(θ), but the intractability

of the likelihood prevents this.

Unbiased estimators

Whilst p(y|θ) is intractable, we can create an estimate, p̂(y|θ;u) := p(y|θ, v), where v has a

density of p(v|θ), and u represents all of the auxiliary variables (e.g. Unif(0,1)) needed to

create a realisation of v. The corresponding estimator is unbiased since

E [p̂(y|θ;U)] = E [p(y|θ, V )] =

∫
p(v|θ)p(y|θ, v) dv = p(y|θ).

Clearly, an average of such estimators is also unbiased. Unbiased estimators may also be

obtained, for example, from importance sampling (i.e. not sampling from p(v|θ), but then

reweighting) or, for hidden Markov models, by a particle filter.

From now on we simply assume that we have an unbiased estimator of the likelihood p̂(y|θ;U)

where auxiliary variable U is sampled from some density q̃(u|θ).

This leads to the following unbiased (up to a fixed constant) estimator of the posterior, π(θ):

π̂(θ;U) = π0(θ)p̂(y|θ;U).
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Algorithm

Start with θ, π̂(θ|u) and at each iteration:

1. Propose θ′ from some q(θ′|θ).

2. Propose u′ from some q̃(u′|θ′) and hence create π̂(θ′|u′).

3. Accept (θ′, π̂(θ′;u′)) with probability

α(θ, u; θ′, u′) = 1 ∧ π̂(θ′;u′)q(θ|θ′)
π̂(θ;u)q(θ′|θ)

.

Amazingly (Beaumont, 2003; Andrieu and Roberts, 2009), the stationary distribution of the

resulting Markov chain has a marginal density of π(θ).

Extended target

In the final section we show that the chain actually targets the joint density

π̃(θ, u) := π̂(θ;u)q̃(u|θ) = π0(θ)q̃(u|θ)p̂(y|θ;u).

Since p̂(y|θ;u) is unbiased, the marginal for this is then

π0(θ)

∫
q̃(u|θ)p̂(y|θ;u) = π0(θ)p(y|θ) ∝ π(θ),

as required,

Detailed balance

The chain targets π̃(θ, u) because detailed balance holds with respect to π̃(θ, u) since

π̃(θ, u) q(θ′|θ)q̃(u′|θ′) α(θ, u; θ′, u′) = q̃(u|θ)q̃(u′|θ′)× [π̂(θ;u)q(θ′|θ) ∧ π̂(θ′;u′)q(θ|θ′)] ,

which is invariant to (θ, u)↔ (θ′, u′).

2



One-dimensional representation

The estimator of the likelihood can be rewritten as p̂(y|θ;U) = Wp(y|θ), implictly defining

W :=
p̂(y|θ;U)

p(y|θ)
with E [W ] = 1

because the estimator is unbiased. The acceptance probability is therefore

α(θ, w; θ′, w′) = 1 ∧ π(θ′)q(θ|θ′)w′

π(θ)q(θ′|θ)w
,

where w and w′ are the multiplicative noises in the estimates of the likelihood at the current

and proposed θ values.

W ′ arises from some (hypothetical) proposal distribution

q̃(w′|θ′) :=

∫
u′:p̂(y|θ;u′)=wp(y|θ)

q̃(u′|θ′)du′.

Of course w, q̃(w|θ) or π(θ) are unknown. However, this representation provides intuition into

the behaviour of pseudo-marginal MH and is used in theoretical analyses of the algorithm.

Firstly we realise that the pseudo-marginal algorithm can be viewed as a Markov chain on

(θ, w). The extended target is in fact

π̃(θ, w) := π(θ)wq̃(w|θ), (1)

and, at stationarity, the conditional density of W |θ is wq̃(w|θ); this is a density as Eq̃ [W ] = 1.

Ordering pseudo-marginal algorithms

Since 1 ∧ kW ′ is a concave function of W ′ and W ∧ k is a concave function of W , we may

apply Jensen’s inequality twice to find (Andrieu and Vihola, 2015):

Ewq̃(w|θ),q̃(w′|θ′) [α(θ,W ; θ′,W ′)] =

∫
dwdw′ wq̃(w|θ)q̃(w′|θ′) α(θ,W ; θ′,W ′)

= Eq̃(w|θ)
[
Eq̃(w′|θ′)

[
W ∧

(
π(θ′)q(θ|θ′)
π(θ)q(θ′|θ)

W ′
)]]

≤ 1 ∧ π(θ′)q(θ|θ′)
π(θ)q(θ′|θ)

.

Therefore the acceptance rate of a pseudo-marginal MH algorithm is never greater than that

of the ideal MH algorithm. In fact, this ordering extends to the spectral gap and to the

variance of the estimator of Eπ [f(θ)] for any f ∈ L2
0(π).
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Andrieu and Vihola (2015) generalise these results to pairs of pseudo-marginal algorithms:

whenever one algorithm can be viewed as a noisy version of another then the noisier one is

always less efficient. In particular, a PMMH algorithm that uses an average of two or more

unbiased estimators is always more efficient than an algorithm which uses just one of the

estimators.

Tuning m when p̂ is obtained using a particle filter

The multiplicative noise in the log-posterior, W , can, in general, have any distribution

provided it is non-negative and E [W ] = 1. However, when p̂(y|θ, U) is obtained via a

particle filter (or SMC) then in the limit as the number of data points, T → ∞ and with

the number of particles m = t/β, for some β > 0 then, subject to mixing conditions (Bérard

et al., 2014) the noise in a new proposal satisfies:

logW ′ ⇒ N

(
−1

2
σ2, σ2

)
,

for some σ2 > 0 which, typically, depends on the parameters, θ, well as the data generating

process. We will provide a heuristic for this result, but first let us note some consequences.

Suppose that σ does not depend on θ. 1 For convenience, set V := logW and V ′ := logW ′.

Thus V ′ ∼ N(−σ2/2, σ2) and immediately from (1) and the line beneath, the conditional

(and marginal) density of V is

exp[v]× 1

σ
√

2π
exp

[
− 1

2σ2
(v + σ2/2)2

]
=

1

σ
√

2π
exp

[
− 1

2σ2
(v − σ2/2)2

]
,

so that V ′ ∼ N(σ2/2, σ2), or

logW ∼ N

(
1

2
σ2, σ2

)
and logW ′ − logW ∼ N

(
−σ2, 2σ2

)
.

Thus, the ratio W ′/W in the pseudo-marginal acceptance probability has a lognormal distri-

bution. This is the starting point for several papers (Pitt et al., 2012; Sherlock et al., 2015;

Doucet et al., 2015; Nemeth et al., 2016) that provide advice on tuning PMMH algorithms

when using a particle filter. All recommend choosing m to give some approximately optimal

σ̂2 value, with the recommended σ̂2 somewhere between 0.8 and 3.3.

1More realistically, σ(θ) varies slowly with θ so if q(θ′|θ) is a local move, σ2(θ′) ≈ σ2(θ) and the following

result holds approximately.
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Sketch proof of the Gaussian limit

For simplicity, suppose that the data, Y1:T := (Y1, . . . , Yt) are iid. Conditional on the tth

data point, yt, we generate m independent auxiliary variables, Ut,i, (i = 1, . . . ,m). Our

estimator of the likelihood is

p̂(y1:T |θ, U) =
T∏
t=1

1

m

m∑
i=1

p̂1(yt|θ, Ut,i) =
T∏
t=1

1

m

m∑
i=1

p̂1(yt|θ)Wt,i = p(y1:T |θ)
T∏
t=1

1

m

m∑
i=1

Wt,i,

where p̂1(y|θ, u) is the unbiased estimator of the likelihood of a single observation, p1(y|θ),
given the auxiliary variable u, and Wt,i := p̂1(yt|θ, Ut,i)/p(yt|θ).

Applying a second-order Taylor expansion, log p̂(y1:T |θ, U)− log p(y1:T |θ) is

T∑
t=1

log

{
1 +

[
1

m

m∑
i=1

Wt,i − 1

]}
≈

T∑
t=1

[
1

m

m∑
i=1

Wt,i − 1

]
− 1

2

[
1

m

m∑
i=1

Wt,i − 1

]2
.

The Wt,i are independent; set τ 2t := Var(Wt,i) <∞, and denote τ 2 = E [τ 2t ], where expecta-

tion is over the distribution of Yt. For simplicity, we ignore the detail that T = [mβ] rather

than T = mβ. The first term in the expansion is

T∑
t=1

[
1

m

m∑
i=1

Wt,i − 1

]
=
√
β × 1√

βm

βm∑
t=1

At ⇒ N
(
0, βτ 2

)
,

by the SLLN, where At := 1√
m

∑m
i=1 (Wt,i − 1) ⇒ N(0, τ 2t ) by the CLT. Similarly, by the

SLLN we obtain
T∑
t=1

[
1

m

m∑
i=1

Wt,i − 1

]2
= β

1

βm

βm∑
t=1

Bt
a.s.−→ βτ 2,

where Bt :=
[

1√
m

∑m
i=1 (Wt,i − 1)

]2
are independent with finite means of τ 2t . Combining

these two limits leads to the required result.
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