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The following results were established in a recent Gazette article [1, Theorems 2, 3, 4].

Given a > 0 and 0 < s < 1, let

xn =
n−1∑
r=0

1

(a + r)s
− 1

1− s

[
(a + n)1−s − a1−s

]
,

yn =
n−1∑
r=0

1

(a + r)s
− 1

1− s

[
(a + n− 1)1−s − a1−s

]
un = 1

2
(xn−1 + yn) = yn −

1

2(a + n− 1)s

Then (xn) is increasing, (yn) is decreasing, and both tend to a limit, denoted by Is(a), as

n →∞. Further, when n →∞,

ns (Is(a)− xn) → 1
2
, ns (yn − Is(a)) → 1

2
, ns+1 (Is(a)− un) → s

12
.

The methods are quite lengthy, and give the appearance of being specific to this case.

Here we present a different, arguably simpler, approach to results of this sort. Without

any extra effort, it delivers a more general version: xn is replaced by
∑n−1

r=0 f(r)−
∫ n

0
f(x)dx,

where f(x) is a function satisfying suitable conditions; in fact, the results gain in both clarity

and simplicity when presented in this way. The first step, the convergence of (xn) and (yn),

is actually no more than the familiar process leading to the existence of Euler’s constant γ.

The harder part is the derivation of the other limits. These are obtained in [1] using various

series expansions. Our method is based instead on an estimate for the error in the trapezium

rule which is well known to specialists in numerical analysis, but possibly less so to Gazette

readers. The author hopes that it will be of interest to some of them. We describe two

proofs, both quite elementary.

We consider a differentiable function f(x) that is positive and decreasing for x ≥ 0 and

satisfies f(x) → 0 as x →∞. Let

Sn = f(0) + f(1) + · · ·+ f(n− 1),

In =

∫ n

0

f(x) dx, Jr =

∫ r+1

r

f(x) dx,

∆n = Sn − In, Γn = Sn+1 − In,

1



so that Γn = ∆n + f(n). Clearly, In = J0 + J1 + · · ·+ Jn−1, so

∆n =
n−1∑
r=0

[f(r)− Jr]. (1)

The basic results about these quantities derive from the following very simple inequality.

Since f(x) is decreasing, we have f(r + 1) ≤ f(x) ≤ f(r) for r ≤ x ≤ r + 1, hence

f(r + 1) ≤ Jr ≤ f(r). (2)

By (1), it follows that ∆n ≥ 0. Further:

Proposition 1: (∆n) is increasing and (Γn) is decreasing. Both converge to the same

limit (say L) as n →∞, and ∆n ≤ L ≤ Γn for all n.

Proof. We have

∆n+1 −∆n = f(n)− Jn ≥ 0,

Γn+1 − Γn = f(n + 1)− Jn ≤ 0.

So Γn is bounded below (by 0) and decreasing, hence it tends to a limit, L, and Γn ≥ L for

all n. Since Γn −∆n = f(n) → 0 as n →∞, ∆n also tends to L.

Example 1: The best known example of this process is given by f(x) = 1/(x + 1).

Then ∆n =
∑n

r=1
1
r
− log(n + 1), and L is Euler’s constant γ.

Example 2: Let f(x) = 1/(a + x)s, where a > 0 and 0 < s < 1. Then, in the notation

of [1],

∆n = xn, Γn = yn+1, L = Is(a).

By (1), we have

L =
∞∑

r=0

[f(r)− Jr], (3)

and hence

L−∆n =
∞∑

r=n

[f(r)− Jr], (4)

Instead of (2), we now consider the trapezium rule estimate for Jr, that is,

Tr = 1
2
f(r) + 1

2
f(r + 1).

This is the integral of the linear function agreeing with f(x) at r and r +1. In most cases, it

is a much more accurate estimate of the integral than either f(r) or f(r + 1). If f is convex
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(i.e. curving upwards), then it is obvious from a diagram that Jr ≤ Tr; a formal proof is

contained in Theorem 3 below. A sufficient condition for convexity is f ′′(x) ≥ 0 for all x. It

is satisfied by many functions of the type we are considering, including the specific examples

given above. Note that

n−1∑
r=0

Tr = 1
2
f(0) +

n−1∑
r=1

f(r) + 1
2
f(n) = Sn − 1

2
f(0) + 1

2
f(n).

To take advantage of the better approximation given by Tr, we introduce

Λn = 1
2
∆n + 1

2
Γn = ∆n + 1

2
f(n).

Then

Λn = Sn + 1
2
f(n)− In =

n−1∑
r=0

(Tr − Jr) + 1
2
f(0),

hence

L− Λn =
∞∑

r=n

(Tr − Jr). (5)

Compare this with (4). For convex f , these formulae show at once that (Λn) is increasing

and L ≥ Λn. In the notation of [1], Λn = un+1.

We now establish an estimate for the error in the trapezium rule, and use it to derive a

pair of inequalities for L−Λn which in turn will imply the limits stated in [1]. The first step

is to give an estimate for the error in linear approximation to a function. This is actually

the case n = 2 of the more general result on the polynomial interpolating a function at n

points (e.g. [2, p. 224]). The proof is a pleasant application of Rolle’s theorem.

Proposition 2: Let f be twice differentiable on [a, b], and let p(x) be the linear function

agreeing with f(x) at a and b. Let q(x) = (x−a)(b−x). Then, given x in (a, b), there exists

ξ in (a, b) such that

p(x)− f(x) = 1
2
q(x)f ′′(ξ).

Proof: We prove the statement for a chosen point x0 in (a, b). Let G(x) = p(x) −
f(x) − kq(x), with k chosen so that G(x0) = 0, hence p(x0) − f(x0) = kq(x0). We have to

show that k = 1
2
f ′′(ξ) for some ξ. Now G(a) = G(b) = G(x0) = 0. By Rolle’s theorem,

applied twice, there exists ξ in (a, b) such that G′′(ξ) = 0. Now p′′(x) = 0 and q′′(x) = −2,

so G′′(x) = −f ′′(x) + 2k for all x. Hence k = 1
2
f ′′(ξ), as required.

Theorem 3: Suppose that m ≤ f ′′(x) ≤ M on [a, b], and let T (f) = 1
2
(b−a)[f(a)+f(b)].

Then
1
12

m(b− a)3 ≤ T (f)−
∫ b

a

f(x) dx ≤ 1
12

M(b− a)3.
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Proof: T (f) =
∫ b

a
p(x) dx, where p(x) is as above. Now q(x) ≥ 0 on [a, b], so by

Proposition 2,
1
2
mq(x) ≤ p(x)− f(x) ≤ 1

2
Mq(x).

Write b− a = h and substitute x− a = y:∫ b

a

q(x) dx =

∫ h

0

y(h− y) dy =
[

1
2
hy2 − 1

3
y3

]h

0
= 1

6
h3.

So
∫ b

a
[p(x)− f(x)] dx lies between 1

12
mh3 and 1

12
Mh3.

Note: We pause to sketch a second, equally attractive, proof of Theorem 3. Write

c = 1
2
(a + b) and

∫ b

a
f(x) dx = I(f). Integration by parts gives∫ b

a

(x− c)f ′(x) dx =
[
(x− c)f(x)

]b

a
−

∫ b

a

f(x) dx

= 1
2
(b− a)[f(b) + f(a)]− I(f)

= T (f)− I(f).

Now integrate by parts the other way round! With q(x) as above, we have q′(x) = a+b−2x =

2(c− x), so we can use −1
2
q(x) as the antiderivative of x− c. We obtain

T (f)− I(f) =
[
− 1

2
q(x)f ′(x)

]b

a
+ 1

2

∫ b

a

q(x)f ′′(x) dx

= 1
2

∫ b

a

q(x)f ′′(x) dx.

since q(a) = q(b) = 0. Again the integrand lies between 1
2
mq(x) and 1

2
Mq(x), and the

statement follows as before.

Clearly, if f ′′(x) is decreasing, then Theorem 3 applies with M = f ′′(a) and m = f ′′(b).

Hence for Tr and Jr defined as above, if f ′′(x) is decreasing, then

1
12

f ′′(r + 1) ≤ Tr − Jr ≤ 1
12

f ′′(r).

We can now state our basic result on L− Λn.

Theorem 4: Suppose that

(a) f(x) is positive and decreasing for x ≥ 0,

(b) f(x) and f ′(x) tend to 0 as x →∞,

(c) f ′′(x) is positive and decreasing for x ≥ 0.

Then

− 1
12

f ′(n + 1) ≤ L− Λn ≤ − 1
12

f ′(n− 1).
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(Note that f ′(x) is negative.)

Proof: By (5) and Theorem 3, provided that
∑∞

r=1 f ′′(r) converges, we have

1
12

∞∑
r=n+1

f ′′(r) ≤ L− Λn ≤ 1
12

∞∑
r=n

f ′′(r).

Since f ′′(x) is decreasing, (2) (applied to successive intervals) gives

∞∑
r=n

f ′′(r) ≤
∫ ∞

n−1

f ′′(x) dx = −f ′(n− 1)

and
∞∑

r=n+1

f ′′(r) ≥
∫ ∞

n+1

f ′′(x) dx = −f ′(n + 1).

The list of conditions on f(x) might seem rather long, but it is very easily seen that

they are all satisfied by 1/(a+x)s (where s > 0). Actually, with a bit of effort, one can show

that the condition f ′(x) → 0 follows from the others.

Example 3: To apply this to γ, take f(x) = 1/(x + 1), and replace n by n − 1 in

Theorem 4. Then Λn−1 =
∑n−1

r=1
1
r
+ 1

2n
− log n, and we deduce that γ = Λn−1 + Rn−1, where

1

12(n + 1)2
≤ Rn−1 ≤

1

12(n− 1)2
.

Even with n quite small, this gives a good approximation to γ. For example, when n = 4,

the resulting lower and upper bounds for γ are 0.57537 and 0.58130.

The same work applies, rather more directly, to the estimation of the tail of a convergent

series. Suppose that f satisfies (a), (b), (c) and that
∫∞

1
f(x) dx is convergent. Then, by

(2),
∑∞

n=1 f(n) is convergent (this is the “integral test for convergence”). Write

S∗n =
∞∑

r=n

f(n), I∗n =

∫ ∞

n

f(x) dx.

It is a familiar fact that I∗n approximates S∗n in some sense. We can now describe this

approximation rather accurately. Clearly,
∑∞

r=n Tr = S∗n − 1
2
f(n) and

∑∞
r=n Jr = I∗n. So the

proof of Theorem 4 gives:

Theorem 5: Under these conditions, S∗n = I∗n + 1
2
f(n)+Rn, where − 1

12
f ′(n+1) ≤ Rn ≤

− 1
12

f ′(n− 1).

Example 4: Let f(x) = 1/xs, where s > 1. The sum of the series
∑∞

n=1 1/ns is the

Riemann zeta function ζ(s). In the notation of Theorem 5,

S∗n =
1

(s− 1)ns−1
+

1

2ns
+ Rn,

5



where
s

12(n + 1)s+1
≤ Rn ≤

1

12(n− 1)s+1
.

Note: If f ′′(x) is convex, then a refinement of the second proof of Theorem 3 (which we

will not describe here) leads to Tr−Jr ≤ 1
12

[f ′(r +1)− f ′(r)]. This means that the f ′(n− 1)

in Theorem 4 can be replaced by f ′(n), so that the n− 1 can be replaced by n in Examples

3 and 4.

Finally, we return to the limits stated at the beginning. We assume two further condi-

tions which are clearly satisfied by 1/(a + x)s. Again, we will not take any trouble investi-

gating the extent to which some of the conditions are implied by the others.

Theorem 6: Let f(x) be as in Theorem 4, and assume further:

(d)
f ′(x + 1)

f ′(x)
→ 1 as x →∞, (e)

f ′(x)

f(x)
→ 0 as x →∞.

Then, when n →∞,
L− Λn

f ′(n)
→ − 1

12
,

L− Λn

f(n)
→ 0,

L−∆n

f(n)
→ 1

2
,

Γn − L

f(n)
→ 1

2
.

Proof. The first statement follows at once from Theorem 4 and (d), since (d) also

implies that f ′(x− 1)/f ′(x) → 1 as x →∞. Condition (e) now gives the second statement.

The last two statements follow at once, since ∆n = Λn − 1
2
f(n) and Γn = Λn + 1

2
f(n).

This illustrates nicely the fact that Λn is a better approximation to L than ∆n or Γn.

These limits reproduce the ones from [1]. Consider, for example, the first one. With

f(x) = 1/(a + x)s and the notation of [1], we have

L− Λn−1

f ′(n− 1)
= −(Is(a)− un)

(a + n− 1)s+1

s
,

so that

ns+1(Is(a)− un) = − sns+1

(a + n− 1)s+1

L− Λn−1

f ′(n− 1)
→ s

12
as n →∞.

A further limit stated in [1] is limn→∞ ns+1(zn − Is(a)) = s/6, where zn = 1
2
(xn + yn)

(Theorem 3). Recall that yn = Γn−1. We leave it as an exercise for the reader to show that

under our conditions, limn→∞(Γn−1 − Γn)/f ′(n) = −1
2

and to derive the limit just stated.
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