
Interpolating polynomials and divided differences

Distinct points: the Lagrange form

We shall take it as known that a polynomial of degree n has at most n distinct zeros

(a proof is given in Lemma 1 below). Given n+1 distinct real numbers xj and any numbers

αj (0 ≤ j ≤ n), there is a unique polynomial p of degree at most n satisfying p(xj) = αj

(0 ≤ j ≤ n). The polynomial is unique, since if p1 and p2 were two such polynomials, then

p1−p2 would be zero at each xj: since it has degree at most n, it can only be zero. Existence

can be deduced from the fact that the matrix with entries xk
j (0 ≤ j ≤ n, 0 ≤ k ≤ n) is

non-singular, but it is easy to describe an explicit construction, as follows.

First, let

q(x) = (x− x0)(x− x1) . . . (x− xn).

Note that q(xj) = 0 for all j and q(x) is of the form xn+1+cnx
n+· · ·+c0, so q(n+1)(x) = (n+1)!

for all x.

For each j, write Nj = {0, 1, . . . , n} \ {j}, and let

qj(x) =
q(x)

x− xj

=
∏

k∈Nj

(x− xk),

rj(x) =
qj(x)

qj(xj)
=

∏
k∈Nj

x− xk

xj − xk

.

Then rj is a polynomial of degree n and we have

rj(xk) =

{
1 if k = j,
0 if k 6= j.

So the required polynomial satisfying p(xj) = αj for all j is:

p(x) =
n∑

j=0

αjrj(x). (1)

So, given a function f , there is a unique polynomial p of degree at most n such that p(xj) =

f(xj) for each j. It is called the “polynomial interpolating f at x0, x1, . . . , xn”. Expression

(1), with αj = f(xj), is called the Lagrange form of the interpolating polynomial.

Note that since q(x) = (x− xj)qj(x), we have q′(xj) = qj(xj).

It is clear, both from uniqueness and from expression (1), that p(x) is independent of

the order in which the points xj are listed.
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If n = 2, then of course p(x) is the linear function ax + b agreeing with f at x0 and x1.

Note that a = [f(x1)− f(x0)]/(x1 − x0).

To find the polynomial in a particular case, it is usually simpler to solve for the co-

efficients, as in the next example. (A very effective alternative method will be described

below.)

Example 1. To interpolate f(x) = 2x at 0, 1, 2: let the required polynomial be

a + bx + cx2. Equating values at x = 0, 1 and 2, we get the equations

a = 1, a + b + c = 2, a + 2b + 4c = 4,

hence b = c = 1
2
, so the polynomial is 1 + 1

2
x + 1

2
x2. Note that p(1

2
) = 13

8
, while f(1

2
) =

√
2.

If f(x) = xk, where 0 ≤ k ≤ n, then of course p(x) is also xk. In terms of the functions

rj(x), this says:

PROPOSITION 1. For 0 ≤ k ≤ n, we have
∑n

j=0 xk
j rj(x) = xk. In particular,∑n

j=0 rj(x) = 1 for all x.

COROLLARY.
n∑

j=0

1

qj(xj)
= 0.

Proof. This is the coefficient of xn−1 in
∑n

j=0 rj(x), which equals 1. �

Example 2. Let f(x) = xn+1. Then, with notation as above, the required p(x) is

f(x)− q(x), since this has degree at most n (the xn+1 term cancels) and agrees with f(x) at

each xj.

It is clear from (1) that the leading term of p(x) is anx
n, where

an =
n∑

j=0

f(xj)

qj(xj)
. (2)

We shall see below that the leading coefficient an has particular significance.

Repeated points

In this section, we show that it is not hard (apart from the complexities of notation) to

extend the notion of interpolating polynomials to the situation where there are repetitions

among the points xj. This version will be used in the application to Simpson’s rule. However,

the reader who is so inclined could omit, or defer, this section after glancing at Lemma 1

and its corollaries (suitably simplified by ignoring the orders of the zeros).
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Suppose, then, that the distinct elements among x0, x1, . . . , xn are listed as y0, y1, . . . , yr,

and that kj of the xi’s are equal to yj, so that
∑r

j=0 kj = n + 1. By the “polynomial

interpolating f at x0, x1, . . . , xn” we mean the polynomial p of degree at most n such that

for each j, p(k)(yj) = f (k)(yj) for 0 ≤ k ≤ kj − 1. We require agreement of the function and

the first kj − 1 derivatives at yj. (The term osculating polynomial is sometimes used for p.)

Of course, f must have at least K − 1 derivatives, where K = max kj. We now establish

existence and uniqueness of this polynomial.

Let f be a function having at least k − 1 derivatives. We say that f has a zero of of

order (or multiplicity) k at the point a if f (j)(a) = 0 for 0 ≤ j ≤ k− 1 and either f (k)(a) 6= 0

or f (k)(a) does not exist (this second case is a technicality of no real importance). Note that

f ′ then has a zero of order k − 1 at a (this even works for k = 1 if a “zero of order 0” is

taken to mean a point that is not a zero!)

Given an interval I, we denote by Z(f, I) the number of zeros of f in I, counted with

their orders. We will just write Z(f) for Z(f, R). By Rolle’s theorem, we have:

LEMMA 1. For any function f (having enough derivatives) and any interval I, we

have Z(f ′, I) ≥ Z(f, I)− 1.

Proof. Let f have a zero of order kr at ar (1 ≤ r ≤ n), so that
∑n

r=1 kr = Z(f, I).

Then f ′ has a zero of order kr − 1 at ar (with the above comment about order 0): these add

up to
n∑

r=1

(kr − 1) = Z(f, I)− n.

By Rolle’s theorem, f ′ also has at least n − 1 zeros in the gaps between the points xr.

Together, these two facts give Z(f ′, I) ≥ Z(f, I)− 1. �

COROLLARY 1. If Z(f, I) ≥ n, then there exists ξ ∈ I such that f (n−1)(ξ) = 0.

COROLLARY 2. Let p be a polynomial of degree n. Then Z(p) ≤ n.

Proof. Let the leading term be anx
n. If Z(p) ≥ n + 1, then there exists ξ such that

p(n)(ξ) = 0. But this is not true, since p(n)(x) = n!an for all x. �

This establishes uniqueness of the interpolating polynomial. Existence could now be

deduced from non-singularity of the (rather unpleasant) matrix corresponding to the implied

set of equations for the coefficients. However, as in the case of distinct points, it is much

more satisfying to prove it directly, as follows.

LEMMA 2. Let f(x) = (x− a)kg(x), where g has at least k derivatives. Then f has a
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zero of order at least k at a, and f (k)(a) = k!g(a).

Proof. This follows at once from Leibniz’s rule for the higher derivatives of a product.

�

PROPOSITION 2. Suppose that xi (0 ≤ i ≤ n) are points of an interval I (possibly

with repetitions), and that f has at least K − 1 derivatives on I, with K as above. Then

there is a unique polynomial interpolating f at the points xi.

Proof. We prove the statement by induction on n. It is trivial for n = 0 (and indeed

for n = 1). Assume it is correct for a certain n, and let points xi (0 ≤ i ≤ n+1) be given. As

above, suppose that points yj (0 ≤ j ≤ r) are such that kj of the points x0, x1, . . . , xn equal

yj. Let p(x) be the polynomial interpolating f at x0, x1, . . . , xn, and let q(x) =
∏n

i=0(x−xi) =∏r
j=0(x− yj)

kj . By Lemma 2, q(x) has a zero of order kj at yj, and q(kj)(yj) 6= 0. Let

p1(x) = p(x) + an+1q(x),

where an+1 is to be chosen (we use this notation because an+1 is the coefficient of xn+1).

Clearly, p
(k)
1 (yj) = f (k)(yj) for 0 ≤ k ≤ kj − 1. We distinguish two cases.

Case 1: xn+1 different from all yj. Then q(xn+1) 6= 0, so we can choose an+1 to ensure

that p1(xn+1) = f(xn+1).

Case 2: xn+1 = yj, say, so kj+1 of the extended list of xi’s equal yj. Since q(kj)(yj) 6= 0,

we can choose an+1 to ensure that p
(kj)
1 (yj) = f (kj)(yj), which is what is required. �

However, we cannot offer an explicit expression for p(x) corresponding to the Lagrange

form for distinct points.

The most extreme case, of course, is when all the points xj coincide. It is then elemen-

tary that the interpolating polynomial is the Taylor expansion

n∑
k=0

f (k)(x0)

k!
(x− x0)

k,

and it is clear that this is indeed the expression generated by the proof of Proposition 2.

Example 3. To interpolate f(x) = 2x at 0, 1, 1, 2 (equally, at 0, 1, 2, 1). We saw

in Example 1 that the polynomial interpolating f at 0, 1, 2 is p(x) = 1 + 1
2
x + 1

2
x2. Let

q(x) = x(x − 1)(x − 2). Then the required polynomial is p1(x) = p(x) + a3q(x), with a3

chosen so that p′1(1) = f ′(1) = 2 log 2. Now p′(1) = 3
2

and q′(1) = −1, so a3 = 3
2
− 2 log 2.

Note that q(1
2
) = 1

2
(−1

2
)(−3

2
) = 3

8
, hence p1(

1
2
) ≈ 1.4176.
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Estimation of the leading coefficient and the error

We now apply Rolle’s theorem (more exactly, Corollary 1 of Lemma 1) to give estima-

tions for the leading coefficient an and the “error” f(x)− p(x).

PROPOSITION 3. Suppose that the points x0, x1, . . . , xn (some possibly repeated) lie in

an interval I and that f is n times differentiable on I. Let p(x) be the polynomial interpolating

f at the points xj, and let the leading term of p(x) be anx
n. Then there exists a point ξ in

I such that

an =
f (n)(ξ)

n!
.

Proof. We have Z(f − p, I) ≥ n + 1: this is obvious when the points xj are distinct,

and follows from our definition of the interpolating polynomial when there are repetitions.

By Corollary 1 of Lemma 1, it follows that there exists ξ ∈ I such that f (n)(ξ)− p(n)(ξ) = 0.

But p(n)(x) = n!an for all x, so an = f (n)(ξ)/n!. �

The case n = 1 (with x1 6= x0) equates to the mean-value theorem, since a1 = [f(x1)−
f(x0)]/(x1 − x0).

The estimation of f(x)− p(x) is derived by a slight elaboration of the same reasoning:

THEOREM 4. Suppose that the points x0, x1, . . . , xn (some possibly repeated) lie in

an interval I and that f is n + 1 times differentiable on I. Let p(x) be the polynomial

interpolating f at the points xj, and let q(x) =
∏n

j=0(x − xj). Then, given a point x in I,

there exists ξ in I such that

f(x)− p(x) =
1

(n + 1)!
q(x)f (n+1)(ξ).

Proof. Choose a point x∗ in I, different from all the xj. We will show that the given

statement applies with x = x∗. Define

G(x) = f(x)− p(x)− kq(x),

with k chosen so that G(x∗) = 0, in other words, f(x∗)− p(x∗) = kq(x∗). We need to show

that k = f (n+1)(ξ)/(n+1)! for some ξ. Now Z(G, I) ≥ n+2. In the case where the points xj

are distinct, this is simply because G is zero at x0, . . . , xn and x∗. When there are repetitions

(for readers interested in this case), it follows from the fact in the notation of Proposition 2,

that q(x), and hence also G(x), has a zero of order at least kj at yj for each j. By Corollary 1,

it follows that there is a point ξ in I such that G(n+1)(ξ) = 0. But p(n+1)(x) = 0 (since p has

degree at most n) and q(n+1)(x) = (n+1)! for all x. So 0 = G(n+1)(ξ) = f (n+1)(ξ)− (n+1)!k,

hence k = f (n+1)(ξ)/(n + 1)!, as required. �
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So if we know that f (n+1)(x) is between m and M for x ∈ I, then f(x)−p(x) is between

(m/(n+1)!) q(x) and (M/(n+1)!) q(x). It makes sense for q(x) to appear in the estimation,

since of course the error is 0 at each xj.

Example 4. Revisit Examples 1 and 3. In Example 1, f (3)(x) = 2x(log 2)3, which is

between (log 2)3 and 4(log 2)3 for x in [0, 2]. Also, q(1
2
) = 3

8
. So the bounds for f(1

2
)− p(1

2
)

given by Theorem 4 are 1
16

(log 2)3 ≈ 0.021 and 1
4
(log 2)3 ≈ 0.083. As we saw, the actual

value is ≈ 0.039.

In Example 3, we apply f (4)(x) = 2x(log 2)4, and q(x) is x(x− 1)2(x− 2), so q(1
2
) = 3

16
.

The bounds are 1
128

(log 2)4 ≈ 0.0018 and 1
32

(log 2)4 ≈ 0.0072. The actual value is ≈ 0.0034.

Note. Example 2 is actually a special case of Theorem 4, since if f(x) = xn+1, then

f (n+1)(x) = (n + 1)!. In this case, the error estimation is exact.

Application: error estimates for the trapezium rule and Simpson’s rule

(This section could be deferred.) The trapezium rule estimates
∫ b

a
f by T (f) =

1
2
(b − a)[f(a) + f(b)], the integral of the linear function p(x) interpolating f at a and b.

From Theorem 4, we can derive the following bounds for its error:

PROPOSITION 5. Suppose that m ≤ f ′′(x) ≤ M for x ∈ [a, b], and let T (f) be as

above. Then
1
12

m(b− a)3 ≤ T (f)−
∫ b

a

f ≤ 1
12

M(b− a)3.

Proof. Let m ≤ f ′′(x) ≤ M for x ∈ [a, b], and let p(x) be as above. Apply Theorem 4

with n = 1: q(x) is (x− a)(x− b), so (reversing signs) we obtain

1
2
m(x− a)(b− x) ≤ p(x)− f(x) ≤ 1

2
M(x− a)(b− x)

for x ∈ [a, b]. Writing b− a = h, we have∫ b

a

(x− a)(b− x) dx =

∫ h

0

y(h− y) dy =
[

1
2
hy2 − 1

3
y3

]h

0
= 1

6
h3.

The stated inequalities follow. �

Because of the intermediate value property of derivatives (which does not require con-

tinuity), one can restate the result as follows: there exists ξ ∈ [a, b] such that T (f)−
∫ b

a
f =

1
12

(b− a)3f ′′(ξ).

Note that when f ′′(x) ≥ 0 (so that f is convex) on [a, b], this result reproduces the

geometrically obvious fact that T (f) ≥
∫ b

a
f .
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For the discussion of Simpson’s rule, we denote the interval in question by I =

[a−h, a+h]. The integral
∫

I
f is approximated by S(f, I) =: h

3
[f(a−h)+4f(a)+f(a+h)].

This equals the integral exactly if f is a quadratic or cubic polynomial, as one can easily

check. So S(f, I) is the integral of (a) the quadratic interpolating f at a−h, a, a+h, or (b)

the cubic interpolating f at a−h, a, a, a+h. (It is not the integral of the cubic interpolating

f at four equally spaced points!)

In general, one would expect the error estimate derived from (b) to be sharper. This is

indeed the one presented as the standard result in most books. The statement is as follows:

PROPOSITION 6. Let I = [a − h, a + h]. Suppose that m ≤ f (4)(x) ≤ M for x ∈ I,

and let S(f, I) be as above. Then

1

90
mh5 ≤ S(f, I)−

∫
I

f ≤ 1

90
Mh5.

Proof. By considering f1(x) = f(x−a), we may assume that a = 0, so that I = [−h, h].

Then S(f, I) =
∫

I
p, where p is the cubic interpolating f at −h, 0, 0, h. Then

q(x) = (x + h)x2(x− h) = x2(x2 − h2).

Note that q(x) ≤ 0 on I. By Theorem 4,

1
24

mx2(h2 − x2) ≤ p(x)− f(x) ≤ 1
24

Mx2(h2 − x2)

for x ∈ I. The statement now follows from the fact that∫ h

−h

x2(h2 − x2) dx = 2
3
h5 − 2

5
h5 = 4

15
h5. �

We remark that the literature contains proofs of this result that are decidedly more

complicated!

Let us at least mention the estimate derived from (a). For this, we assume that

m′ ≤ f (3)(x) ≤ M ′ on I, and we have q(x) = x(x2 − h2), which is positive on (−h, 0) and

negative on (0, h). By considering these intervals separately, one finds that∣∣∣∣S(f, I)−
∫

I

f

∣∣∣∣ ≤ 1
24

(M ′ −m′)h4.

Example 5. Let J =
∫ 2

0
2x dx. This equals 3/ log 2 ≈ 4.3281. The approximation S

given by Simpson’s rule is 1
3
(1 + 4 × 2 + 4) = 41

3
, so S − J ≈ 0.0052. In the notation

of Proposition 6, M = 4(log 2)4 and m = (log 2)4, so the upper and lower estimates for

7



S − J are M
90
≈ 0.0103 and m

90
≈ 0.0026. Meanwhile, the estimates derived from (a) are

±1
8
(log 2)3 ≈ ±0.0416. (However, there are cases where one of the estimates derived from

(a) is actually better; the reader can verify that this occurs for the integral
∫ 3

1
(1/x) dx.)

Newton’s form of the polynomial and divided differences

Let x0, x1, . . . , xn be any list of points (possibly with repetitions), and let p be any

polynomial of degree n: p(x) = c0 + c1x + · · · + cnx
n. Then p(x) can be expressed in the

form

p(x) = a0 + a1(x− x0) + a2(x− x0)(x− x1) + . . . + an(x− x0)(x− x1) . . . (x− xn−1). (3)

To demonstrate this, first equate coefficients of xn to get an = cn. Next, equate coefficients

of xn−1: we get cn−1 = an−1− an(x0 + · · ·+xn−1), which determines an−1. Continuing in the

same way, we see that each ak exists and is uniquely determined.

For the interpolating polynomial, the expression of the form (3) is called Newton’s

form. For now, we restrict the discussion to the case where the points xj are distinct.

As already mentioned, an is the coefficient of xn, which is given by (2). At the opposite

end, the value at x0 shows that a0 = p(x0) = f(x0). Equating values at x1, we then have

a0 + a1(x1 − x0) = p(x1) = f(x1), which determines a1. We will now derive an expression

for each ak.

Newton’s form has the following highly desirable property:

PROPOSITION 7. Let the points xj be distinct. Let p(x) be as in (3), and let pk(x)

be the sum of the first k + 1 terms (that is, as far as the term containing ak). Then pk(x) is

the polynomial interpolating f at x0, x1, . . . , xk.

Proof. The polynomial pk(x) has degree at most k and, for 0 ≤ j ≤ k, we have

pk(xj) = p(xj) = f(xj), since all the subsequent terms in p(x) have (x− xj) as a factor. �

It follows that each ak in (3) is defined by (2), with k replacing n. We restate this more

carefully. Our original notation Nj, qj presupposed a fixed, unstated n. For clarity, we now

adopt the following more precise notation. Let distinct points x0, x1, . . . , xk (with k ≥ 1) be

given. For 0 ≤ j ≤ k, let Nk,j = {0, 1, . . . , k} \ {j} and qk,j(x) =
∏

r∈Nk,j
(x − xr). Given a

function f , the divided difference f [x0, x1, . . . , xk] is defined by

f [x0, x1, . . . , xk] =
k∑

j=0

f(xj)

qk,j(xj)
. (4)

For a single point, f [x0] is defined to be f(x0). What we have established is that when p(x)
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is expressed as in (3), we have ak = f [x0, x1, . . . , xk] for each k.

Of course, Proposition 3 applies: f [x0, x1, . . . , xk] = f (k)(ξ)/k! for some ξ ∈ I.

With this notation in place, we can give a pleasantly simple expression for the difference

between f(x) and p(x):

PROPOSITION 8. Let p(x) be the polynomial interpolating f(x) at distinct points

x0, x1, . . . , xn, and let q(x) =
∏n

j=0(x− xj). Then for x different from all the xj,

f(x)− p(x) = f [x0, x1, . . . , xn, x]q(x).

Proof. Let x be given and write x = xn+1. Let pn+1(x) be the polynomial interpolating

f at x0, x1, . . . , xn, xn+1. By Proposition 7,

pn+1(x) = p(x) + f [x0, . . . , xn, xn+1]q(x)

(for all x). Apply this with x = xn+1: since pn+1(xn+1) = f(xn+1), we obtain the desired

statement. �

This gives a second proof of Theorem 4 (at least for distinct points).

Both from (4), and from the fact that the interpolating polynomial does not depend

on the order in which the points are listed, we have:

PROPOSITION 9. If (y0, y1, . . . , yn) is a permutation of (x0, x1, . . . , xn), then

f [y0, y1, . . . yn] = f [x0, x1, . . . , xn]. �

Example 6. Let f(x) = xk, and let x0, x1, . . . , xn be given, with n ≥ k. Then the

interpolating polynomial is xk itself. So f [x0, x1, . . . , xn] equals 0 if n > k and 1 if n = k.

We now show how divided differences of order n can be derived from those of order

n− 1. This is very useful for actual calculation. Numerous different proofs can be found in

the literature. We present two of them.

LEMMA 3. Let points x0, x1, . . . xn−2, y, z be given (where n ≥ 2). Denote as follows

the polynomials interpolating f at the points stated:

py(x): points x0, x1, . . . , xn−2, y;

pz(x): points x0, x1, . . . , xn−2, z;

py,z(x): points x0, x1, . . . , xn−2, y, z.

Then

py,z(x) =
(x− z)py(x)− (x− y)pz(x)

y − z
.
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Proof. The stated polynomial has degree n and agrees with f at each xj, y and z. �

PROPOSITION 10. We have

f [x0, x1, . . . , xn−1, xn] =
f [x0, . . . , xn−2, xn]− f [x0, . . . , xn−2, xn−1]

xn − xn−1

. (5)

Note. Because of the symmetry of divided differences, we can present (5) in various

alternative ways, for example

f [x0, x1, . . . , xn] =
f [x1, x2, . . . , xn]− f [x0, x1, . . . , xn−1]

xn − x0

. (6)

Proof 1. In Lemma 3, take y = xn and z = xn−1. Equating the coefficients of xn, we

obtain the stated identity. �

Proof 2. We prove the statement in the form (6). Express p(x) as in (3). But also,

taking the points in reverse order, we can write

p(x) = b0 + b1(x− xn) + · · ·+ bn−1(x− xn) . . . (x− x2) + bn(x− xn)(x− xn−1) . . . (x− x1).

We have an = bn = f [x0, x1, . . . , xn], also

an−1 = f [x0, x1, . . . , xn−1], bn−1 = f [xn, xn−1, . . . , x1].

But, equating the coefficients of xn−1, we have

an−1 − an(x0 + x1 + · · ·+ xn−1) = bn−1 − bn(xn + xn−1 + · · ·+ x1),

hence (noting that bn = an) an(xn − x0) = bn−1 − an−1. �

Some writers prefer to use (5), together with f [x0] = f(x0), as a recursive definition of

divided differences.

We can use Proposition 10 to calculate divided differences successively. For example,

f [x1, x2, x3] =
f [x2, x3]− f [x1, x2]

x3 − x1

.

The calculations can be tabulated in the following way:

x0 f(x0)
f [x0, x1]

x1 f(x1) f [x0, x1, x2]
f [x1, x2] f [x0, x1, x2, x3]

x2 f(x2) f [x1, x2, x3]
f [x2, x3]

x3 f(x3)
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Example 7. To interpolate f(x) = 2x at 0, 1, 2, 3. We construct a table as above.

The columns labelled f2, f3, f4 are the divided differences over sets of 2, 3 and 4 points

respectively.
xj f(xj) f2 f3 f4

0 1
1

1 2 1
2

2 1
6

2 4 1
4

3 8

The successive divided differences involving x0 are seen on the top sloping line: 1, 1, 1
2
, 1

6
,

so the Newton form for the polynomial (with the points in this order) is

1 + x + 1
2
x(x− 1) + 1

6
x(x− 1)(x− 2),

which one can rewrite (if desired) as 1+ 5
6
x+ 1

6
x3. The method of solving for coefficients would

have been distinctly more laborious! The first three terms give the polynomial 1 + 1
2
x + 1

2
x2

interpolating 2x at the points 0, 1, 2, as previously found in Example 1. Also, ignoring the

point 0, we can read off the polynomial interpolating 2x at 1, 2, 3: 2+2(x−1)+(x−1)(x−2).

We finish this section with a pleasant result on substitution of divided differences.

PROPOSITION 11. Let the points xi (0 ≤ i ≤ k) and yj (0 ≤ j ≤ r) be distinct, and

let g(x) = f [y0, y1, . . . , yr, x]. Then

g[x0, x1, . . . , xk] = f [y0, . . . , yr, x0, . . . , xk].

Proof. Induction on k. The case k = 0 is the definition of g. Assume the statement

true for k − 1 (i.e. for sets of k points). By Proposition 10 and the induction hypothesis,

g[x0, x1, . . . , xk] =
g[x1, x2, . . . , xk]− g[x0, x1, . . . , xn−1]

xk − x0

=
f [y0, . . . , yr, x1, x2, . . . , xk]− f [y0, . . . , yr, x0, x1, . . . , xk−1]

xk − x0

= f [y0, . . . , yr, x0, . . . , xk]. �

Repeated points

We have already defined what we mean by the interpolating polynomial in the case

when points are repeated, and shown that it exists (Proposition 2). We now show how

11



the notion of divided differences and the construction of the Newton form can be adapted,

without too much trouble, to deal with this case.

First consider the extreme case when all the points coincide: xj = x0 for 0 ≤ j ≤ n.

Suppose that f (n) exists and is continuous at x0. It is clear from Proposition 3 that if we

define

f [x0, x0, . . . , x0] =
f (n)(x0)

n!
, (7)

then we will have extended the definition of the divided difference in a way that makes it

continuous at the point (x0, x0, . . . , x0). Furthermore, the resulting Newton form

f [x0] + f [x0, x0](x− x0) + · · ·+ f [x0, x0, . . . , x0](x− x0)
n =

n∑
k=0

f (k)(x0)

k!
(x− x0)

k,

is the polynomial interpolating f at x0, . . . , x0.

Now suppose that the sequence x0, x1, . . . , xn comprises k0 repetitions of y0 followed

by k1 repetitions of y1, up to kr repetitions of yr. For the moment, it is important to keep

the repeated terms together. Having defined expressions of the form f [yj, . . . , yj] by (7), we

now complete a difference table as before. In other words, having defined divided differences

of length k, those of length k + 1 are defined by

f [x0, x1, . . . , xk] =
f [x1, x2, . . . , xk]− f [x0, x1, . . . , xk−1]

xk − x0

(8)

whenever the xj do not all coincide, so that xk 6= x0. It is clear that divided differences,

defined this way, are continuous functions of the variables, given continuity of enough deriva-

tives of f . Also, an easy induction shows that f [xk, xk−1, . . . , x0] = f [x0, x1, . . . , xk].

LEMMA 4. Proposition 7 still applies when there are repetitions.

Proof. Let p(x), expressed as in (3), be the polynomial interpolating f at x0, x1, . . . , xn,

and let pn−1(x) be formed from p(x) by leaving out the last term anqn(x), where qn(x) =

(x − x0) . . . (x − xn−1). We show that pn−1(x) interpolates f at x0, x1, . . . , xn−1. Supppose

that kj of the terms x0, x1, . . . , xn equal yj. Then f − p has a zero of order at least kj at

yj. If xn 6= yj, then qn has a zero of order at least kj at yj, and hence f − pn−1 does so. If

xn = yj, then qn, and hence f − pn−1, has a zero of order at least kj − 1 at yj. In both cases,

this is what is required. �

PROPOSITION 12. Let x0, x1, . . . , xn be any list of points, possibly with repetitions, in

an interval I, and suppose that f has continuous nth derivative on I. Then the polynomial

interpolating f at these points is given by (3), with ak = f [x0, x1, . . . , xk], as just defined.

12



Proof. We prove the statement by induction. It is trivial for n = 0 (and almost trivial

for n = 1). Assume that it is correct for n − 1, and let x0, x1, . . . , xn be given. The case

where xj = x0 for all j has been established above, so we suppose that this is not the case.

Let p(x), expressed as in (3), be the polynomial interpolating f at x0, x1, . . . , xn. We have

to show that an = f [x0, x1, . . . , xn].

We do this by adapting the second proof of Proposition 10. In the notation used there,

we have again an = bn and, by Lemma 4 and the induction hypothesis,

an−1 = f [x0, x1, . . . , xn−1],

bn−1 = f [xn, xn−1, . . . , x1] = f [x1, x2, . . . , xn].

Exactly as before, we have an(xn − x0) = bn−1 − an−1. By (8), it follows that an =

f [x0, x1, . . . , xn] . �

Example 8. To interpolate f(x) = 1/x at 1, 2, 2, 2, 3. Then f [2, 2] = f ′(2) = −1
4

and

f [2, 2, 2] = 1
2
f ′′(2) = 1

8
. Entering these values in the table, we obtain:

xj f(xj) f2 f3 f4 f5

1 1
−1

2

2 1
2

1
4

−1
4

−1
8

2 1
2

1
8

1
24

−1
4

− 1
24

2 1
2

1
12

−1
6

3 1
3

So the polynomial is

1− 1
2
(x− 1) + 1

4
(x− 1)(x− 2)− 1

8
(x− 1)(x− 2)2 + 1

24
(x− 1)(x− 2)3.

The reader may care to repeat Example 3 in this style.

For Proposition 12, we did not need full-scale symmetry of divided differences, only

reversal of the order. However, a simple continuity argument shows that full-scale symmetry

still applies:

PROPOSITION 13. Proposition 9 still applies when there are repetitions: if (y0, y1, . . . , yn)

is a permutation of (x0, x1, . . . , xn), then

f [y0, y1, . . . yn] = f [x0, x1, . . . , xn].
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Proof. Given a point x = (x0, x1, . . . , xn) of Rn+1, there are clearly points x(k) of Rn+1

that converge to x as k → ∞ and have all components distinct. Let y(k) be formed from

x(k) by the corresponding permutation. By Proposition 9, we have (with obvious notation)

f [y(k) = f [x(k)] for each k. Since the divided difference is a continuous function on Rn+1, we

have f [y] = limk→∞ f [y(k)] and similarly for x, so f [y] = f [x]. �

In the same way, Propositions 8 and 11 can be freed from the requirement that the

points are distinct.

The integral expression for divided differences

(The reader is free to defer this section, or leave it out.) There is an explicit expression

for divided differences in the form of a repeated integral. This is of interest in theory

(especially in the case of repeated points), but distinctly less useful for actual computation

than the process described above.

PROPOSITION 14. Suppose that xj (0 ≤ j ≤ n) are points of an interval I (possibly

repeated) , and that f has continuous nth derivative on I. Then f [x0, x1, . . . , xn] equals∫ 1

0

dt1

∫ t1

0

dt2 · · ·
∫ tn−1

0

f (n)[x0 + (x1 − x0)t1 + · · ·+ (xn − xn−1)tn] dtn. (9)

Proof. We prove the statement for the case when the points are distinct. The case

where there are repeated points then follows by continuity as in Proposition 13, since it is

clear that the integral defines a continuous function of the variables xj. First, we prove the

case n = 1. The stated integral is then

I1 =

∫ 1

0

f ′[x0 + (x1 − x0)t1] dt1.

The substitution x0 + (x1 − x0)t1 = u gives

I1 =
1

x1 − x0

∫ x1

x0

f ′(u) du =
f(x1)− f(x0)

x1 − x0

= f [x0, x1].

Assume the statement correct for sets of n points. Take x0, x1, . . . , xn and let In be the

integral stated. For the integration with respect to tn, substitute

x0 + (x1 − x0)t1 + · · ·+ (xn−1 − xn−2)tn−1 + (xn − xn−1)tn = u.

The limits of integration for u are

u0 = x0 + (x1 − x0)t1 + · · ·+ (xn−1 − xn−2)tn−1,

14



u1 = x0 + (x1 − x0)t1 + · · ·+ (xn − xn−2)tn−1.

The transformed integral is

1

xn − xn−1

∫ u1

u0

f (n)(u) du =
1

xn − xn−1

[f (n−1)(u1)− f (n−1)(u0)].

By the induction hypothesis and Proposition 10, we now have

In =
f [x0, . . . , xn−2, xn]− f [x0, . . . , xn−2, xn−1]

xn − xn−1

= f [x0, x1, . . . , xn−1, xn]. �

This gives an alternative proof of Proposition 3, since∫ 1

0

dt1

∫ t1

0

dt2 · · ·
∫ tn−1

0

dtn =
1

n!
.

There is also an explicit expression for divided differences (with repeated points) in

terms of partial derivatives. We state it without proof: Let the list x0, x1, . . . , xn comprise

kj + 1 repetitions of yj for 0 ≤ j ≤ r. Then

f [x0, x1, . . . , xn] =
1

k0! . . . kr!

∂k0

∂yk0
0

∂kr

∂ykr
r

f [y0, y1, . . . yr].

Equally spaced points: forward differences

Suppose that the points xj are equally spaced, so that (for some h > 0), xj = x0 + jh

for each j. The divided differences can then be expressed in terms of the forward difference

operator ∆, defined as follows (for a chosen h):

(∆f)(x) = f(x + h)− f(x),

and ∆nf = ∆(∆n−1f), so that

(∆nf)(x) = (∆n−1f)(x + h)− (∆n−1f)(x).

Hence, for example, (∆2f)(x) = f(x+2h)−2f(x+h)+f(x). Clearly, (∆f)(x0) = hf [x0, x1],

where x1 = x0 + h.

PROPOSITION 15. Let xj = x + jh (0 ≤ j ≤ n). Then

(∆nf)(x) = n!hnf [x0, x1, . . . , xn].

Proof. By induction. The case n = 1 is immediate, as above. Assume the statement

holds for n− 1. Then, by Proposition 10,

(∆nf)(x) = (∆n−1f)(x1)− (∆n−1f)(x0)

= (n− 1)!hn−1(f [x1, x2, . . . , xn]− f [x0, x1, . . . , xn−1]

= (n− 1)!hn−1nhf [x0, x1, . . . , xn]

= n!hnf [x0, x1, . . . , xn].
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PROPOSITION 16. (∆nf)(x) =
n∑

j=0

(−1)j

(
n

j

)
f(xj), where xj = x + jh.

Proof. By Proposition 15,

(∆nf)(x) = n!hn

n∑
j=0

f(xj)

qj(xj)
.

Now for fixed j,
∏

i<j(xj − xi) = j!hj and
∏

k>j(xj − xk) = (−1)n−j(n− j)!hn−j, so

qj(xj) = hn(−1)n−jj!(n− j)!.

The stated equality follows. �

Propositions 16 and 3 give at once:

PROPOSITION 17. If f is n times differentiable on [x, x + nh], then there exists ξ in

(x, x + nh) such that (∆nf)(x) = hnf (n)(ξ). �

Alternative direct proof. By induction. The case n = 1 is the mean-value theorem.

Assume the statement true for a certain n. Then ∆n+1f = ∆ng, where g = ∆f , so g(x) =

f(x+h)−f(x). By the induction hypothesis, there exists η in [x, x+nh] such that (∆ng)(x) =

g(n)(η) = f (n)(η + h) − f (n)(η). By the mean-value theorem again, this equals f (n+1)(ξ) for

some ξ in (η, η + h). �

One can give a direct proof of Proposition 16 in similar fashion.

The integral expression for forward differences is pleasantly simple: each integration is

now on the fixed interval [0, h]:

PROPOSITION 18. Suppose that f is n times differentiable on [x, x + nh]. Then

(∆nf)(x) =

∫ h

0

dt1

∫ h

0

dt2 . . .

∫ h

0

f (n)(x + t1 + · · ·+ tn) dtn.

Proof. The case n = 1 is correct, since it says∫ h

0

f ′(x + t1) dt1 = f(x + h)− f(x).

Assuming the statement correct for n, we have

(∆n+1f)(x) = (∆nf)(x + h)− (∆nf)(x) =

∫ h

0

dt1

∫ h

0

dt2 . . .

∫ h

0

G(tn) dtn,

where

G(tn) = f (n)(x + h + t1 + · · ·+ tn)− f (n)(x + t1 + · · ·+ tn)

=

∫ h

0

f (n+1)(x + t1 + · · ·+ tn + tn+1) dtn+1.
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Substituting this, we obtain the required formula for the case n + 1. �

Uniform approximation and Chebyshev polynomials

This section of our notes has a slightly more advanced flavour, but most of it should

still be accessible to readers with a basic grounding in Real Analysis (at one point, we use a

standard result from Complex Analysis). Our starting point is the expression for the “error”

f(x)−p(x) in Theorem 4: [1/(n+1)!]f (n+1)(ξ)q(x), where q(x) =
∏n

j=0(x−xj). In Example

2, we saw that when f(x) is xn+1, the error is exactly q(x).

Now q(x) depends on the points xj. How can we choose these points so as to make

q(x) (and hence the error estimation) as “small” as possible (in some sense)? Different

measures of “smallness” are possible, but we will adopt the simple-minded one of best uniform

approximation, measured by the maximum deviation from 0 on the given interval [a, b]. In

other words, the problem is to minimize ‖q‖∞, where

‖q‖∞ = sup{|q(x)| : a ≤ x ≤ b}

(this is standard notation). For the moment, we take [a, b] to be [−1, 1] and replace n + 1

by n.

One might expect the objective to be achieved by taking equally spaced points, but this

is not the case! Furthermore, it is rather remarkable that the desired q(x) can be identified

explicitly: a beautiful piece of reasoning shows that it is the Chebyshev polynomial Tn(x).

These polynomials are defined, for each n, by the identity

cos nt = 2n−1Tn(cos t).

For example, since cos 3t = 4 cos3 t− 3 cos t, we have T3(x) = x3− 3
4
x. For present purposes,

we do not need to know anything about these polynomials except that they exist, and that

Tn is monic with degree n (easily proved by induction, using the identity cos(n + 1)t +

cos(n− 1)t = 2 cos nt cos t).

Every x in [−1, 1] is expressible as cos t, and | cos nt| ≤ 1 for all t, so ‖Tn‖∞ = 2−(n−1).

(Of course, this says nothing about the behaviour of Tn outside [−1, 1].) Also, since cos kπ =

(−1)k and cos(k + 1
2
)π = 0 for integers k, we have:

if yk = cos
kπ

n
, then Tn(yk) = (−1)k 2−(n−1),

if xj = cos
(j + 1

2
)π

n
, then Tn(xj) = 0, hence Tn(x) = (x−x0)(x−x1) . . . (x−xn−1).
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THEOREM 19. Let ‖q‖∞ = sup{|q(x)| : −1 ≤ x ≤ 1}. Among all monic polynomials

q of degree n, ‖q‖∞ is least when q = Tn, and then ‖q‖∞ = 2−(n−1). So if q(x) is expressed

as
∏n−1

j=0 (x− xj), then ‖q‖∞ is least when xj = cos[(j + 1
2
)π/n].

Proof. Write 2−(n−1) = α, so that Tn(yk) = (−1)kα for 0 ≤ k ≤ n. Note that the points

yk are in decreasing order, with y0 = 1, yn = −1. Suppose that |q(yk)| < α for each k. Then

Tn(yk) − q(yk) is strictly positive for even k (since then Tn(yk) = α) and strictly negative

for odd k. By the intermediate value theorem, it follows that Tn − q has a zero in each open

interval (yk+1, yk), hence at least n zeros in total. But this is impossible, since Tn − q is a

polynomial of degree at most n− 1 (the xn term cancels). So in fact |q(yk)| ≥ α for some k,

hence ‖q‖ ≥ α = ‖Tn‖∞. �

To transfer this result to a general interval [a, b], perform the substitution x =
1
2
(b − a)t + 1

2
(a + b): when x goes from a to b, t goes from −1 to 1. If xj is the point

corresponding to tj = cos[(j + 1
2
)π/n], then x− xj = 1

2
(b− a)(t− tj), so

n−1∏
j=0

(x− xj) =
1

2n
(b− a)nTj(t) :

denote this polynomial by T̃n(x): we call it the “transferred Chebyshev polynomial”, and

the points xj the “Chebyshev points”. The conclusion is:

COROLLARY. Let ‖q‖∞ = sup{|q(x)| : a ≤ x ≤ b}. Among all monic polynomials q

of degree n, ‖q‖∞ is least when q = T̃n, and then ‖q‖∞ = (b− a)n/22n−1.

Inserted into Theorem 4 (still with n + 1 replaced by n), this gives at once:

THEOREM 20. Suppose that |f (n)(x)| ≤ Mn on [a, b], and let pn−1 be the polynomial

interpolating f at the Chebyshev points xj (0 ≤ j ≤ n − 1). Let ‖f‖∞ = sup{|f(x)| : a ≤
x ≤ b}. Then

‖f − pn−1‖∞ ≤ (b− a)nMn

22n−1n!
. �

As the reader may know, one says that pn → f as n → ∞ uniformly on [a, b] if

‖f − pn‖∞ → 0 as n →∞. By Theorem 20, this will occur, for any [a, b], if, for some K, we

have Mn ≤ Kn for all n. However, bounds of this form for f (n)(x) do not commonly apply!

Example 9. Consider f(x) = 1/x on the interval [1, b]. Then f (n)(x) = (−1)n−1n!/xn+1,

so Mn = n! and for the pn defined in Theorem 20, we have ‖f − pn−1‖∞ ≤ (b− 1)n/22n−1 =

2[(b− 1)/4]n. This tends to 0, implying uniform convergence, if b− 1 < 4.

In general, Real Analysis does not provide a pleasant estimation of bounds for higher
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derivatives. However, Complex Analysis does, in the form of the following standard result:

LEMMA 5. Suppose that f is analytic on {z : |z − z0| < R}. Suppose that r < R and

|f(z)| ≤ M for |z − z0| = r. Then |f (n)(z0)| ≤ Mn!/rn for all n ≥ 1. �

Armed with this, we can formulate a convergence theorem based on the nature of f

as a complex function. Given a real interval I = [a, b], let Er(I) be the set of points in the

complex plane at distance no more than r from some point of I. This is comprised of the

rectangle {x + iy : a ≤ x ≤ b, |y| ≤ r} together with semicircles centred at a and b.

THEOREM 21. Suppose that f is analytic on a complex region containing Er(I), where

I = [a, b] and b− a < 4r. Let pn be defined as in Theorem 20. Then pn → f uniformly on I

as n →∞.

Proof. Then |f(z)| is bounded, say by M , on Er(I). By Theorem 20 and Lemma 5,

‖f − pn−1‖∞ ≤ M(b− a)n

22n−1rn
= 2M

(
b− a

4r

)n

,

which tends to 0 as n →∞ if b− a < 4r. �

This is not the strongest possible theorem of this type, but it is what follows naturally

from this approach.

For comparison, we now give a brief account of the corresponding results for equally

spaced points xj, starting with an estimation of |q(x)|. To cater for the fact that q is zero

at each xj, define the function r∗ by: r∗(t) = t(1− t) for 0 ≤ t ≤ 1 and r∗(t + k) = r∗(t) for

integers k. Since t(1− t) = 1
4
− (t− 1

2
)2, we have 0 ≤ r∗(t) ≤ 1

4
for all t.

PROPOSITION 22. Let xj = x0 + jh (0 ≤ j ≤ n), and let qn(x) =
∏n

j=0(x − xj). If

xk ≤ x ≤ xk+1, then

|qn(x)| ≤ hn+1(k + 1)!(n− k)!r∗(t),

where x = x0 + th. If qn is defined this way with [x0, xn] = [a, b], then

‖qn‖∞ ≤ n!

4nn+1
(b− a)n+1.

Proof. The substitution x = x0 + th gives qn(x) = hn+1πn(t), where πn(t) =

t(t− 1) . . . (t− n). Also, xk ≤ x ≤ xk+1 translates to k ≤ t ≤ k + 1. Clearly,

k−1∏
j=0

(t− j) ≤
k−1∏
j=0

(k + 1− j) = (k + 1)!,
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n∏
j=k+2

(j − t) ≤
n∏

j=k+2

(j − k) = (n− k)!.

Hence πn(t) ≤ (k + 1)!(n− k)!r∗(t).

Now (k+1)!(n−k)! ≤ n! for each k (with equality when k is 0 or n−1) and 0 ≤ r∗(t) ≤ 1
4
.

Substituting h = (b− a)/n, we obtain the stated bound for ‖qn‖∞. �

Clearly, if k is close to n/2, then (k + 1)!(n− k)! is much less than n!, so much smaller

bounds for qn(x) apply near the middle of the interval.

We assume Stirling’s theorem, which states that n! ∼ cnn+ 1
2 e−n as n → ∞, where

c = (2π)1/2. With this substitution, the bound for ‖qn‖∞ in Proposition 22 becomes

c′(b−a)n+1/[n1/2en], where c′ = 1
4
c. The corresponding bound for the Chebyshev polynomial,

after replacing n by n + 1, was 1
2
(b− a)n+1/4n (Corollary to Theorem 19). Essentially, it is

better by having the dividing factor 4n instead of en.

Inserting Proposition 22 into Theorem 4, we obtain:

PROPOSITION 23. Suppose that |f (n+1)(x)| ≤ Mn+1 on [a, b], and let pn be the poly-

nomial interpolating f at n + 1 equally spaced points xj in [a, b]. Then

‖f − pn‖∞ ≤ (b− a)n+1Mn+1

4(n + 1)nn+1
. �

Applying Lemma 5, we obtain the analogue of Theorem 21:

PROPOSITION 24. Suppose that f is analytic on a complex region containing Er(I),

where I = [a, b] and b − a < er. Let pn be the polynomial interpolating f at n + 1 equally

spaced points xj in [a, b]. Then pn → f uniformly on I as n →∞.

Proof. By Proposition 23 and Lemma 5, ‖f − pn‖∞ is bounded by

(b− a)n+1

4(n + 1)nn+1

M(n + 1)!

rn+1
=

M(b− a)n+1n!

(nr)n+1

∼ M(b− a)n+1

(nr)n+1
cnn+ 1

2 e−n by Stirling’s theorem

=
c′

n1/2

(
b− a

er

)n+1

for another constant c′. �

We leave it as an exercise for the interested reader to show that, under these conditions,

convergence will occcur at the mid-point of the interval if b− a < 2er.
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It was shown by Runge in 1901 that for the function f(x) = 1/(1+x2), the sequence of

interpolating polynomials for equally spaced points does not converge pointwise to f(x). We

finish with a proof of this fact. It involves some fairly detailed estimations, but the following

account offers at least a modest degree of simplification compared with some.

Recall Proposition 8: f(x)− p(x) = f [x0, x1, . . . , xn, x]q(x).

LEMMA 6. Let f(x) = 1/(1 + x2) and let xj (−n ≤ j ≤ n) be distinct points with

x−j = −xj for each j. Then

f [x0, x−1, x1, . . . , x−n, xn, x] = (−1)n+1xf(x)
n∏

j=1

1

1 + x2
j

.

Proof. We show first that

f [x−1, x1, . . . , x−n, xn, x] = (−1)nf(x)
n∏

j=1

1

1 + x2
j

. (10)

First we consider the case n = 1. Since x−1 = −x1 and f(x−1) = f(x1), we have, by (2):

f [x−1, x1, x] =
f(x)

x2 − x2
1

+
f(x1)

2x1(x1 − x)
+

f(x1)

2x1(x1 + x)

=
f(x)− f(x1)

x2 − x2
1

=
1

x2 − x2
1

(
1

1 + x2
− 1

1 + x2
1

)
= − 1

(1 + x2)(1 + x2
1)

.

Assume now that (10) holds for a certain n, and denote the LHS by g(x). By Proposition

11 and the case n = 1, we then have

f [x−1, x1, . . . , x−n, xn, x−(n+1), xn+1, x] = g[x−(n+1), xn+1, x]

= (−1)n

n∏
j=1

1

1 + x2
j

f [x−(n+1), xn+1, x]

= (−1)n+1

n+1∏
j=1

1

1 + x2
j

f(x).

This establishes (10), by induction. Also, since x0 = 0 and f(x0) = 1, we have

f [x0, x] =
f(x)− 1

x
= − x

1 + x2
= −xf(x).
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By Proposition 10 again,

f [x0, x−1, x1, . . . , x−n, xn, x] = g[x0, x]

= (−1)n

n∏
j=1

1

1 + x2
j

f [x0, x]

= (−1)n+1xf(x)
n∏

j=1

1

1 + x2
j

. �

PROPOSITION 25. Let f(x) = 1/(1 + x2). Let pn be the polynomial interpolating f

at n + 1 equally spaced points through [−a, a]. If a > 121
2
, then the sequence [pn(1

2
a)] does

not converge.

Proof. Let h = a/n and xj = jh for −n ≤ j ≤ n. By Proposition 8 and Lemma 6,

|f(x)− p2n(x)| = |x|f(x)|qn(x)|
n∏

j=1

1

1 + j2h2
,

where qn(x) =
∏n

j=−n(x − jh). Write An = |qn(1
2
a)| and Bn =

∏n
j=1(1 + j2h2). Our

statement will follow if we can show that An/Bn →∞ when n tends to infinity through odd

values. To do this, we will estimate log An from below and log Bn from above by comparison

with the corresponding integrals.

Let n = 2r − 1, so that 1
2
a = (r − 1

2
)h. Then

log An =
2r−1∑

j=−2r+1

log |r − 1
2
− j|+ (2n + 1) log h

=
r∑

k=1

log(k − 1
2
) +

3r−1∑
k=1

log(k − 1
2
) + (4r − 1) log h.

Now log x is a concave function (the second derivative is negative) and for any concave

function g, one has
∫ k

k−1
g ≤ g(k − 1

2
) (this is geometrically obvious, and easy to prove

formally from the mean-value theorem). So

r∑
k=1

log(k − 1
2
) ≥

∫ r

0

log x dx = x log x− x,

(remark: this is the the main element of the proof of Stirling’s formula). Hence also

3r−1∑
k=1

log(k − 1
2
) ≥

3r∑
k=1

log(k − 1
2
)− log 3r

≥ (3r − 1) log 3r − 3r

≥ 3r(log r + log 3− 1)− log 3r.
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Further,

(4r − 1) log h = (4r − 1)[log a− log(2r − 1)] > (4r − 1) log a− 4r(log r + log 2).

Together, these inequalities give

log A2r−1 > 4r(log a− 1) + (3 log 3− 4 log 2)r − log r − c1 (11)

for a certain constant c1.

We turn to the estimaton of log Bn. It equals
∑n

j=1 g(jh), where g(x) = log(1 + x2).

Since g is an increasing function, standard integral comparison gives h
∑n−1

j=1 g(jh) ≤ I,

where I =
∫ a

0
g(x) dx. Integrating by parts, with 1 as one factor, we find

I = a log(1 + a2)− 2

∫ a

0

(
1− 1

1 + x2

)
dx

< a log(1 + a2)− 2a + π.

Hence

log Bn ≤
I

h
+ g(a) =

nI

a
+ g(a) < (n + 1) log(1 + a2)− 2n +

πn

a
.

Now

log(1 + a2)− 2 log a =

∫ 1+a2

a2

1

t
dt <

1

a2
,

hence (with n = 2r − 1) we have

log Bn < 2n(log a− 1) +

(
π

a
+

1

a2

)
n + c2

< 4r(log a− 1) + 2

(
π

a
+

1

a2

)
r + c2 (12)

for a certain constant c2. By (11) and (12), it is clear that we will have log A2r−1−log B2r−1 →
∞ as r →∞ provided that

2

(
π

a
+

1

a2

)
< 3 log 3− 4 log 2 ≈ 0.5232,

which is true for a ≥ 121
2
. �
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